In this article, we consider a parametric vector equilibrium problem in topological vector spaces, or metric spaces, if needed, defined as follows: given f : K x K x Lambda --> Y, find (x) over bar is an element of K such that f((x) over bar, y, lambda) not less than 0, for all y is an element of K, where the order in Y is defined by a suitable fixed cone C. We study the upper stability of the map of the solutions S = S(lambda), providing results in the peculiar framework of generalized monotone functions. In the particular case of a single-valued solution map, we provide conditions for the Holder regularity of S in both cases when K is fixed, and also when it depends on a parameter.

Bianchi, M., Pini, R. (2006). Sensitivity for parametric vector equilibria. OPTIMIZATION, 55(3), 221-230 [10.1080/02331930600662732].

Sensitivity for parametric vector equilibria

PINI, RITA
2006

Abstract

In this article, we consider a parametric vector equilibrium problem in topological vector spaces, or metric spaces, if needed, defined as follows: given f : K x K x Lambda --> Y, find (x) over bar is an element of K such that f((x) over bar, y, lambda) not less than 0, for all y is an element of K, where the order in Y is defined by a suitable fixed cone C. We study the upper stability of the map of the solutions S = S(lambda), providing results in the peculiar framework of generalized monotone functions. In the particular case of a single-valued solution map, we provide conditions for the Holder regularity of S in both cases when K is fixed, and also when it depends on a parameter.
Articolo in rivista - Articolo scientifico
parametric vector equilibrium problems; upper hemicontinuity of the solutions; vector generalized monotonicity
English
giu-2006
55
3
221
230
none
Bianchi, M., Pini, R. (2006). Sensitivity for parametric vector equilibria. OPTIMIZATION, 55(3), 221-230 [10.1080/02331930600662732].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/249
Citazioni
  • Scopus 62
  • ???jsp.display-item.citation.isi??? 64
Social impact