Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA LE MODIFICHE in fondo alla pagina
Bicocca Open Archive
DIII-D research is addressing critical challenges in preparation for ITER and the next generation of fusion devices through focusing on plasma physics fundamentals that underpin key fusion goals, understanding the interaction of disparate core and boundary plasma physics, and developing integrated scenarios for achieving high performance fusion regimes. Fundamental investigations into fusion energy science find that anomalous dissipation of runaway electrons (RE) that arise following a disruption is likely due to interactions with RE-driven kinetic instabilities, some of which have been directly observed, opening a new avenue for RE energy dissipation using naturally excited waves. Dimensionless parameter scaling of intrinsic rotation and gyrokinetic simulations give a predicted ITER rotation profile with significant turbulence stabilization. Coherence imaging spectroscopy confirms near sonic flow throughout the divertor towards the target, which may account for the convection-dominated parallel heat flux. Core-boundary integration studies show that the small angle slot divertor achieves detachment at lower density and extends plasma cooling across the divertor target plate, which is essential for controlling heat flux and erosion. The Super H-mode regime has been extended to high plasma current (2.0 MA) and density to achieve very high pedestal pressures (∼30 kPa) and stored energy (3.2 MJ) with H 98y2 ≈ 1.6-2.4. In scenario work, the ITER baseline Q = 10 scenario with zero injected torque is found to have a fusion gain metric independent of current between q 95 = 2.8-3.7, and a lower limit of pedestal rotation for RMP ELM suppression has been found. In the wide pedestal QH-mode regime that exhibits improved performance and no ELMs, the start-up counter torque has been eliminated so that the entire discharge uses ≈0 injected torque and the operating space is more ITER-relevant. Finally, the high- (3.8) hybrid scenario has been extended to the high-density levels necessary for radiating divertor operation, achieving ∼40% divertor heat flux reduction using either argon or neon with P tot up to 15 MW.
Abadie, L., Abrams, T., Ahn, J., Akiyama, T., Aleynikov, P., Allcock, J., et al. (2019). DIII-D research towards establishing the scientific basis for future fusion reactors. NUCLEAR FUSION, 59(11) [10.1088/1741-4326/ab024a].
DIII-D research towards establishing the scientific basis for future fusion reactors
L. Abadie;T. W. Abrams;J. Ahn;T. Akiyama;P. Aleynikov;J. Allcock;E. O. Allen;S. Allen;J. P. Anderson;A. Ashourvan;M. E. Austin;J. Bak;K. K. Barada;N. Barbour;L. Bardoczi;J. Barr;J. L. Barton;E. M. Bass;D. Battaglia;L. R. Baylor;J. Beckers;E. A. Belli;J. W. Berkery;N. Bertelli;J. M. Bialek;J. A. Boedo;R. L. Boivin;P. T. Bonoli;A. Bortolon;M. D. Boyer;R. E. Brambila;B. Bray;D. P. Brennan;A. R. Briesemeister;S. A. Bringuier;M. W. Brookman;D. L. Brower;B. R. Brown;W. D. Brown;D. Buchenauer;M. G. Burke;K. H. Burrell;J. Butt;R. J. Buttery;I. Bykov;J. M. Candy;J. M. Canik;N. M. Cao;L. Carbajal Gomez;L. C. Carlson;T. N. Carlstrom;T. A. Carter;W. Cary;L. Casali;M. Cengher;V. S. Chan;B. Chen;J. Chen;J. Chen;M. Chen;R. Chen;Xi Chen;W. Choi;C. Chrobak;C. Chrystal;R. M. Churchill;M. Cianciosa;C. F. Clauser;M. Clement;J. Coburn;C. S. Collins;A. W. Cooper;B. M. Covele;J. W. Crippen;N. A. Crocker;B. J. Crowley;A. Dal Molin;E. M. Davis;J. S. deGrassie;C. A. del-Castillo-Negrete;L. F. Delgado-Aparicio;A. Diallo;S. J. Diem;R. Ding;S. Ding;W. Ding;J. L. Doane;D. C. Donovan;J. Drake;D. Du;H. Du;X. Du;V. Duarte;J. D. Duran;N. W. Eidietis;D. Elder;D. Eldon;W. Elwasif;T. E. Ely;K. M. Eng;K. Engelhorn;D. Ennis;K. Erickson;D. R. Ernst;T. E. Evans;M. E. Fenstermacher;N. M. Ferraro;J. R. Ferron;D. F. Finkenthal;P. A. Fisher;B. Fishler;S. M. Flanagan;J. A. Fooks;L. Frassinetti;H. G. Frerichs;Y. Fu;T. Fulop;Q. Gao;F. Garcia;A. M. Garofalo;A. Gattuso;L. Giacomelli;E. M. Giraldez;C. Giroud;F. Glass;P. Gohil;X. Gong;Y. A. Gorelov;R. S. Granetz;D. L. Green;C. M. Greenfield;B. A. Grierson;R. J. Groebner;W. H. Grosnickle;M. Groth;H. J. Grunloh;H. Y. Guo;W. Guo;J. Guterl;R. C. Hager;S. Hahn;F. D. Halpern;H. Han;M. J. Hansink;J. M. Hanson;J. Harris;S. R. Haskey;D. R. Hatch;W. W. Heidbrink;J. Herfindal;D. N. Hill;M. D. Hill;E. T. Hinson;C. T. Holcomb;C. G. Holland;L. D. Holland;E. M. Hollmann;A. M. Holm;R. Hong;M. Hoppe;S. Houshmandyar;J. Howard;N. T. Howard;Q. Hu;W. Hu;H. Huang;J. Huang;Y. Huang;G. A. Hughes;J. Hughes;D. A. Humphreys;A. W. Hyatt;K. Ida;V. Igochine;Y. In;S. Inoue;A. Isayama;R. C. Isler;V. A. Izzo;M. R. Jackson;A. E. Jarvinen;Y. Jeon;H. Ji;X. Jian;R. Jimenez;C. A. Johnson;I. Joseph;D. N. Kaczala;D. H. Kaplan;J. Kates-Harbeck;A. G. Kellman;D. H. Kellman;C. E. Kessel;K. Khumthong;C. C. Kim;H. Kim;J. Kim;K. Kim;S. H. Kim;W. Kimura;J. R. King;A. Kirk;K. Kleijwegt;M. Knolker;A. Kohn;E. Kolemen;M. Kostuk;G. J. Kramer;P. Kress;D. M. Kriete;R. J. La Haye;F. M. Laggner;H. Lan;M. J. Lanctot;R. Lantsov;L. L. Lao;C. J. Lasnier;C. Lau;K. Law;D. Lawrence;J. Le;R. L. Lee;M. Lehnen;R. Leon;A. W. Leonard;M. Lesher;J. A. Leuer;G. Li;K. Li;K. T. Liao;Z. Lin;C. Liu;C. Liu;F. Liu;Y. Liu;Z. Liu;S. Loch;N. C. Logan;J. M. Lohr;J. Lore;T. C. Luce;N. C. Luhmann;R. Lunsford;C. Luo;Z. Luo;L. Lupin-Jimenez;A. Lvovskiy;B. C. Lyons;X. Ma;R. Maingi;M. A. Makowski;P. Mantica;M. Manuel;M. W. Margo;A. Marinoni;E. Marmar;W. C. Martin;R. L. Masline;G. K. Matsunaga;D. M. Mauzey;P. S. Mauzey;J. T. Mcclenaghan;G. R. Mckee;A. G. Mclean;H. S. Mclean;E. Meier;S. J. Meitner;J. E. Menard;O. Meneghini;G. Merlo;W. H. Meyer;D. C. Miller;W. J. Miller;C. P. Moeller;K. J. Montes;M. A. Morales;S. Mordijck;A. Moser;R. A. Moyer;S. A. Muller;S. Munaretto;M. Murakami;C. J. Murphy;C. M. Muscatello;C. E. Myers;A. Nagy;G. A. Navratil;R. M. Nazikian;A. L. Neff;T. F. Neiser;A. Nelson;P. Nguyen;R. Nguyen;J. H. Nichols;M. Nocente;R. E. Nygren;R. C. O'Neill;T. Odstrcil;S. Ohdachi;M. Okabayashi;E. Olofsson;M. Ono;D. M. Orlov;T. H. Osborne;N. A. Pablant;D. C. Pace;R. R. Paguio;A. Pajares Martinez;C. Pan;A. Pankin;J. M. Park;J. Park;Y. Park;C. T. Parker;S. E. Parker;P. B. Parks;C. J. Pawley;C. A. Paz-Soldan;W. A. Peebles;B. G. Penaflor;T. W. Petrie;C. C. Petty;Y. Peysson;A. Y. Pigarov;D. A. Piglowski;R. I. Pinsker;P. Piovesan;N. Piper;R. A. Pitts;J. D. Pizzo;M. L. Podesta;F. M. Poli;D. Ponce;M. Porkolab;G. D. Porter;R. Prater;J. Qian;O. Ra;T. Rafiq;R. Raman;C. Rand;G. C. Randall;J. M. Rauch;C. Rea;M. L. Reinke;J. Ren;Q. Ren;Y. Ren;T. L. Rhodes;J. Rice;T. D. Rognlien;J. C. Rost;W. L. Rowan;D. L. Rudakov;A. Salmi;B. S. Sammuli;C. M. Samuell;A. M. Sandorfi;C. Sang;O. J. Sauter;D. P. Schissel;L. Schmitz;O. Schmitz;E. J. Schuster;J. T. Scoville;A. Seltzman;I. Sfiligoi;M. Shafer;H. Shen;T. Shi;D. Shiraki;H. Si;D. R. Smith;S. P. Smith;J. A. Snipes;P. B. Snyder;E. R. Solano;W. M. Solomon;A. C. Sontag;V. A. Soukhanovskii;D. A. Spong;W. M. Stacey;G. M. Staebler;L. Stagner;B. Stahl;P. C. Stangeby;T. J. Stoltzfus-Dueck;D. P. Stotler;E. J. Strait;D. Su;L. E. Sugiyama;A. A. Sulyman;Y. Sun;C. Sung;W. A. Suttrop;Y. Suzuki;A. Svyatkovskiy;R. M. Sweeney;S. Taimourzadeh;M. Takechi;T. Tala;H. Tan;S. Tang;X. Tang;D. Taussig;G. Taylor;N. Z. Taylor;T. S. Taylor;A. Teklu;D. M. Thomas;M. B. Thomas;K. E. Thome;A. R. Thorman;R. A. Tinguely;B. J. Tobias;J. F. Tooker;H. Torreblanca;A. Torrezan De Sousa;G. L. Trevisan;D. Truong;F. Turco;A. D. Turnbull;E. A. Unterberg;P. Vaezi;P. J. Vail;M. A. Van Zeeland;M. Velasco Enriquez;M. C. Venkatesh;B. S. Victor;F. Volpe;M. R. Wade;M. L. Walker;J. R. Wall;G. M. Wallace;R. E. Waltz;G. Wang;H. Wang;H. Wang;Y. Wang;Y. Wang;Z. Wang;Z. Wang;F. Wang;S. H. Ward;J. G. Watkins;M. Watkins;W. P. Wehner;M. Weiland;D. B. Weisberg;A. S. Welander;A. E. White;R. B. White;D. Whyte;T. A. Wijkamp;R. Wilcox;T. Wilks;H. R. Wilson;A. Wingen;E. Wolfe;M. Wu;W. Wu;S. J. Wukitch;T. Xia;N. Xiang;B. Xiao;R. Xie;G. Xu;H. Xu;X. Xu;Z. Yan;Q. Yang;X. Yang;M. Yoshida;G. Yu;J. H. Yu;M. Yu;S. A. Zamperini;L. Zeng;B. Zhao;D. Zhao;H. Zhao;Y. Zhao;Y. Zhu;Y. Zhu;B. Zywicki
2019
Abstract
DIII-D research is addressing critical challenges in preparation for ITER and the next generation of fusion devices through focusing on plasma physics fundamentals that underpin key fusion goals, understanding the interaction of disparate core and boundary plasma physics, and developing integrated scenarios for achieving high performance fusion regimes. Fundamental investigations into fusion energy science find that anomalous dissipation of runaway electrons (RE) that arise following a disruption is likely due to interactions with RE-driven kinetic instabilities, some of which have been directly observed, opening a new avenue for RE energy dissipation using naturally excited waves. Dimensionless parameter scaling of intrinsic rotation and gyrokinetic simulations give a predicted ITER rotation profile with significant turbulence stabilization. Coherence imaging spectroscopy confirms near sonic flow throughout the divertor towards the target, which may account for the convection-dominated parallel heat flux. Core-boundary integration studies show that the small angle slot divertor achieves detachment at lower density and extends plasma cooling across the divertor target plate, which is essential for controlling heat flux and erosion. The Super H-mode regime has been extended to high plasma current (2.0 MA) and density to achieve very high pedestal pressures (∼30 kPa) and stored energy (3.2 MJ) with H 98y2 ≈ 1.6-2.4. In scenario work, the ITER baseline Q = 10 scenario with zero injected torque is found to have a fusion gain metric independent of current between q 95 = 2.8-3.7, and a lower limit of pedestal rotation for RMP ELM suppression has been found. In the wide pedestal QH-mode regime that exhibits improved performance and no ELMs, the start-up counter torque has been eliminated so that the entire discharge uses ≈0 injected torque and the operating space is more ITER-relevant. Finally, the high- (3.8) hybrid scenario has been extended to the high-density levels necessary for radiating divertor operation, achieving ∼40% divertor heat flux reduction using either argon or neon with P tot up to 15 MW.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/247046
Citazioni
23
25
Social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 598/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.