Few attempts have been made to model mathematically the progression of type 2 diabetes. A realistic representation of the long-term physiological adaptation to developing insulin resistance is necessary for effectively designing clinical trials and evaluating diabetes prevention or disease modification therapies. Writing a good model for diabetes progression is difficult because the long time span of the disease makes experimental verification of modeling hypotheses extremely awkward. In this context, it is of primary importance that the assumptions underlying the model equations properly reflect established physiology and that the mathematical formulation of the model give rise only to physically plausible behavior of the solutions. In the present work, a model of the pancreatic islet compensation is formulated, its physiological assumptions are presented, some fundamental qualitative characteristics of its solutions are established, the numerical values assigned to its parameters are extensively discussed (also with reference to available cross-sectional epidemiologic data), and its performance over the span of a lifetime is simulated under various conditions, including worsening insulin resistance and primary replication defects. The differences with respect to two previously proposed models of diabetes progression are highlighted, and therefore, the model is proposed as a realistic, robust description of the evolution of the compensation of the glucose-insulin system in healthy and diabetic individuals. Model simulations can be run from the authors' web page

De Gaetano, A., Hardy, T., Beck, B., Abu-Raddad, E., Palumbo, P., Bue-Valleskey, J., et al. (2008). Mathematical models of diabetes progression. AMERICAN JOURNAL OF PHYSIOLOGY: ENDOCRINOLOGY AND METABOLISM, 295(6), 1462-1479 [10.1152/ajpendo.90444.2008].

Mathematical models of diabetes progression

Palumbo, P;
2008

Abstract

Few attempts have been made to model mathematically the progression of type 2 diabetes. A realistic representation of the long-term physiological adaptation to developing insulin resistance is necessary for effectively designing clinical trials and evaluating diabetes prevention or disease modification therapies. Writing a good model for diabetes progression is difficult because the long time span of the disease makes experimental verification of modeling hypotheses extremely awkward. In this context, it is of primary importance that the assumptions underlying the model equations properly reflect established physiology and that the mathematical formulation of the model give rise only to physically plausible behavior of the solutions. In the present work, a model of the pancreatic islet compensation is formulated, its physiological assumptions are presented, some fundamental qualitative characteristics of its solutions are established, the numerical values assigned to its parameters are extensively discussed (also with reference to available cross-sectional epidemiologic data), and its performance over the span of a lifetime is simulated under various conditions, including worsening insulin resistance and primary replication defects. The differences with respect to two previously proposed models of diabetes progression are highlighted, and therefore, the model is proposed as a realistic, robust description of the evolution of the compensation of the glucose-insulin system in healthy and diabetic individuals. Model simulations can be run from the authors' web page
Articolo in rivista - Articolo scientifico
glucose; insulin resistance; mathematical models
English
2008
295
6
1462
1479
reserved
De Gaetano, A., Hardy, T., Beck, B., Abu-Raddad, E., Palumbo, P., Bue-Valleskey, J., et al. (2008). Mathematical models of diabetes progression. AMERICAN JOURNAL OF PHYSIOLOGY: ENDOCRINOLOGY AND METABOLISM, 295(6), 1462-1479 [10.1152/ajpendo.90444.2008].
File in questo prodotto:
File Dimensione Formato  
2008 AJP-EM - Diabetes Progression.pdf

Solo gestori archivio

Dimensione 410.69 kB
Formato Adobe PDF
410.69 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/246681
Citazioni
  • Scopus 73
  • ???jsp.display-item.citation.isi??? 66
Social impact