Nitric oxide (NO) is one of the most important mediators and neurotransmitters and its levels change under pathological conditions. NO production may be regulated by endogenous nitric oxide synthase (NOS) inhibitors, in particular asymmetric dimethylarginine (ADMA). Most of the interest is focused on ADMA, since this compound is present in plasma and urine and accumulation of ADMA has been described in many disease states but little is known about cerebrospinal fluid (CSF) concentrations of this compound and of its structural isomer symmetric dimethyl-arginine (SDMA). To determine the levels of methylarginines, we here present a new hydrophilic interaction chromatography (HILIC)-MS/MS method for the precise determination of these substances in CSF from microdialysis samples of rat prefrontal cortex (PFC). The method requires only minimal sample preparation and features isotope-labelled internal standards. © 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Zotti, M., Schiavone, S., Tricarico, F., Colaianna, M., D'Apolito, O., Paglia, G., et al. (2008). Determination of dimethylarginine levels in rats using HILIC-MS/MS: An in vivo microdialysis study. JOURNAL OF SEPARATION SCIENCE, 31(13), 2511-2515 [10.1002/jssc.200800147].
Determination of dimethylarginine levels in rats using HILIC-MS/MS: An in vivo microdialysis study
Paglia G.;
2008
Abstract
Nitric oxide (NO) is one of the most important mediators and neurotransmitters and its levels change under pathological conditions. NO production may be regulated by endogenous nitric oxide synthase (NOS) inhibitors, in particular asymmetric dimethylarginine (ADMA). Most of the interest is focused on ADMA, since this compound is present in plasma and urine and accumulation of ADMA has been described in many disease states but little is known about cerebrospinal fluid (CSF) concentrations of this compound and of its structural isomer symmetric dimethyl-arginine (SDMA). To determine the levels of methylarginines, we here present a new hydrophilic interaction chromatography (HILIC)-MS/MS method for the precise determination of these substances in CSF from microdialysis samples of rat prefrontal cortex (PFC). The method requires only minimal sample preparation and features isotope-labelled internal standards. © 2008 Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.