We present a search for prompt gamma-ray counterparts to compact binary coalescence gravitational wave (GW) candidates from Advanced LIGO's first observing run (O1). As demonstrated by the multimessenger observations of GW170817/GRB 170817A, electromagnetic and GW observations provide complementary information about the astrophysical source, and in the case of weaker candidates, may strengthen the case for an astrophysical origin. Here we investigate low-significance GW candidates from the O1 compact binary coalescence searches using the Fermi Gamma-Ray Burst Monitor (GBM), leveraging its all sky and broad energy coverage. Candidates are ranked and compared to background to measure the significance. Those with false alarm rates (FARs) of less than 10 -5 Hz (about one per day, yielding a total of 81 candidates) are used as the search sample for gamma-ray follow-up. No GW candidates were found to be coincident with gamma-ray transients independently identified by blind searches of the GBM data. In addition, GW candidate event times were followed up by a separate targeted search of GBM data. Among the resulting GBM events, the two with the lowest FARs were the gamma-ray transient GW150914-GBM presented in Connaughton et al. and a solar flare in chance coincidence with a GW candidate.

Burns, E., Goldstein, A., Hui, C., Blackburn, L., Briggs, M., Connaughton, V., et al. (2019). A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run. THE ASTROPHYSICAL JOURNAL, 871(1), 9001-9012 [10.3847/1538-4357/aaf726].

A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run

Giacomazzo, B.;
2019

Abstract

We present a search for prompt gamma-ray counterparts to compact binary coalescence gravitational wave (GW) candidates from Advanced LIGO's first observing run (O1). As demonstrated by the multimessenger observations of GW170817/GRB 170817A, electromagnetic and GW observations provide complementary information about the astrophysical source, and in the case of weaker candidates, may strengthen the case for an astrophysical origin. Here we investigate low-significance GW candidates from the O1 compact binary coalescence searches using the Fermi Gamma-Ray Burst Monitor (GBM), leveraging its all sky and broad energy coverage. Candidates are ranked and compared to background to measure the significance. Those with false alarm rates (FARs) of less than 10 -5 Hz (about one per day, yielding a total of 81 candidates) are used as the search sample for gamma-ray follow-up. No GW candidates were found to be coincident with gamma-ray transients independently identified by blind searches of the GBM data. In addition, GW candidate event times were followed up by a separate targeted search of GBM data. Among the resulting GBM events, the two with the lowest FARs were the gamma-ray transient GW150914-GBM presented in Connaughton et al. and a solar flare in chance coincidence with a GW candidate.
Articolo in rivista - Articolo scientifico
gamma-ray burst: general; gravitational waves;
gamma-ray burst: general; gravitational waves; Astronomy and Astrophysics; Space and Planetary Science
English
2019
871
1
9001
9012
90
open
Burns, E., Goldstein, A., Hui, C., Blackburn, L., Briggs, M., Connaughton, V., et al. (2019). A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run. THE ASTROPHYSICAL JOURNAL, 871(1), 9001-9012 [10.3847/1538-4357/aaf726].
File in questo prodotto:
File Dimensione Formato  
Burns_2019_ApJ_871_90.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 1.22 MB
Formato Adobe PDF
1.22 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/243095
Citazioni
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 26
Social impact