Using an extended set of equations of state and a multiple-group multiple-code collaborative effort to generate waveforms, we improve numerical-relativity-based data-analysis estimates of the measurability of matter effects in neutron-star binaries. We vary two parameters of a parametrized piecewise-polytropic equation of state (EOS) to analyze the measurability of EOS properties, via a parameter Λ that characterizes the quadrupole deformability of an isolated neutron star. We find that, to within the accuracy of the simulations, the departure of the waveform from point-particle (or spinless double black-hole binary) inspiral increases monotonically with Λ and changes in the EOS that did not change Λ are not measurable. We estimate with two methods the minimal and expected measurability of Λ in second- and third-generation gravitational-wave detectors. The first estimate using numerical waveforms alone shows that two EOSs which vary in radius by 1.3 km are distinguishable in mergers at 100 Mpc. The second estimate relies on the construction of hybrid waveforms by matching to post-Newtonian inspiral and estimates that the same EOSs are distinguishable in mergers at 300 Mpc. We calculate systematic errors arising from numerical uncertainties and hybrid construction, and we estimate the frequency at which such effects would interfere with template-based searches.

Jocelyn S., R., Luca, B., Jolien D. E., C., John L., F., Giacomazzo, B., Koutarou, K., et al. (2013). Matter effects on binary neutron star waveforms. PHYSICAL REVIEW D, PARTICLES, FIELDS, GRAVITATION, AND COSMOLOGY, 88 [10.1103/PhysRevD.88.044042].

Matter effects on binary neutron star waveforms

Giacomazzo, Bruno;
2013

Abstract

Using an extended set of equations of state and a multiple-group multiple-code collaborative effort to generate waveforms, we improve numerical-relativity-based data-analysis estimates of the measurability of matter effects in neutron-star binaries. We vary two parameters of a parametrized piecewise-polytropic equation of state (EOS) to analyze the measurability of EOS properties, via a parameter Λ that characterizes the quadrupole deformability of an isolated neutron star. We find that, to within the accuracy of the simulations, the departure of the waveform from point-particle (or spinless double black-hole binary) inspiral increases monotonically with Λ and changes in the EOS that did not change Λ are not measurable. We estimate with two methods the minimal and expected measurability of Λ in second- and third-generation gravitational-wave detectors. The first estimate using numerical waveforms alone shows that two EOSs which vary in radius by 1.3 km are distinguishable in mergers at 100 Mpc. The second estimate relies on the construction of hybrid waveforms by matching to post-Newtonian inspiral and estimates that the same EOSs are distinguishable in mergers at 300 Mpc. We calculate systematic errors arising from numerical uncertainties and hybrid construction, and we estimate the frequency at which such effects would interfere with template-based searches.
Articolo in rivista - Articolo scientifico
numerical relativity, hydrodynamics, neutron stars, gravitational waves
English
2013
88
reserved
Jocelyn S., R., Luca, B., Jolien D. E., C., John L., F., Giacomazzo, B., Koutarou, K., et al. (2013). Matter effects on binary neutron star waveforms. PHYSICAL REVIEW D, PARTICLES, FIELDS, GRAVITATION, AND COSMOLOGY, 88 [10.1103/PhysRevD.88.044042].
File in questo prodotto:
File Dimensione Formato  
Read-2013-Phys Rev D-VoR.pdf

Solo gestori archivio

Descrizione: Article
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 4.62 MB
Formato Adobe PDF
4.62 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/243032
Citazioni
  • Scopus 236
  • ???jsp.display-item.citation.isi??? 228
Social impact