No cure yet exists for devastating Alzheimer's disease (AD), despite many years and humongous efforts to find efficacious pharmacological treatments. So far, neither designing drugs to disaggregate amyloid plaques nor tackling solely inflammation turned out to be decisive. Mesenchymal stem cells (MSCs) and, in particular, extracellular vesicles (EVs) originating from them could be proposed as an alternative, strategic approach to attack the pathology. Indeed, MSC-EVs—owing to their ability to deliver lipids/proteins/enzymes/microRNAs endowed with anti-inflammatory, amyloid-β degrading, and neurotrophic activities—may be exploited as therapeutic tools to restore synaptic function, prevent neuronal death, and slow down memory impairment in AD. Herein the results presented in the most recently published studies on this topic are critically evaluated, providing a strong rationale for possible employment of MSC-EVs in AD. Also see the video abstract here https://youtu.be/tBtDbnlRUhg.
Elia, C., Losurdo, M., Malosio, M., Coco, S. (2019). Extracellular Vesicles from Mesenchymal Stem Cells Exert Pleiotropic Effects on Amyloid-β, Inflammation, and Regeneration: A Spark of Hope for Alzheimer's Disease from Tiny Structures?. BIOESSAYS, 41(4) [10.1002/bies.201800199].
Extracellular Vesicles from Mesenchymal Stem Cells Exert Pleiotropic Effects on Amyloid-β, Inflammation, and Regeneration: A Spark of Hope for Alzheimer's Disease from Tiny Structures?
Losurdo, M;Coco, S
2019
Abstract
No cure yet exists for devastating Alzheimer's disease (AD), despite many years and humongous efforts to find efficacious pharmacological treatments. So far, neither designing drugs to disaggregate amyloid plaques nor tackling solely inflammation turned out to be decisive. Mesenchymal stem cells (MSCs) and, in particular, extracellular vesicles (EVs) originating from them could be proposed as an alternative, strategic approach to attack the pathology. Indeed, MSC-EVs—owing to their ability to deliver lipids/proteins/enzymes/microRNAs endowed with anti-inflammatory, amyloid-β degrading, and neurotrophic activities—may be exploited as therapeutic tools to restore synaptic function, prevent neuronal death, and slow down memory impairment in AD. Herein the results presented in the most recently published studies on this topic are critically evaluated, providing a strong rationale for possible employment of MSC-EVs in AD. Also see the video abstract here https://youtu.be/tBtDbnlRUhg.File | Dimensione | Formato | |
---|---|---|---|
Elia-2019-Bioessays-VoR.pdf
Solo gestori archivio
Descrizione: Article
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
832.44 kB
Formato
Adobe PDF
|
832.44 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Elia-2019-Bioessays-AAM.pdf
accesso aperto
Descrizione: Article
Tipologia di allegato:
Author’s Accepted Manuscript, AAM (Post-print)
Licenza:
Altro
Dimensione
673.9 kB
Formato
Adobe PDF
|
673.9 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.