Biological tissues and organs, with the age, diseases, trauma, or eventually congenital defects can breakdown and lead to different pathological states. In these circumstances, regenerative medicine has the goal to restore and replace damaged tissues. Different key elements can be involved into regenerative approaches; among them, bio-scaffolds engineering may be crucial, developed to afford mechanical and signalling support to surrounding cells, contributing to directing cell fate toward biological regeneration. Over the years, several innovative bio-materials have been developed, highlighting that both physical and biochemical signals are able to drive cell fate toward specific biological responses. Nowadays, bio-materials can be divided into natural or artificial scaffolds and can be efficiently projected in order to fine-modulate mechanical properties resembling natural tissues (i.e., hardness for bone, elasticity for blood vessels, or cartilage), or to mimic the native cell microenvironment, i.e. the extra-cellular matrix (ECM), , , including complex biochemical signals. In this PhD course several areas of applied organic chemistry allowed to synthesize new functionalized 2D or 3D scaffold and glycol-dendrimers, giving new interesting biomaterials for tissue engineering applications. In this thesis there are collected results, with a special attention on hydrogels synthesis, as a 3D scaffold, to mimic extra-cellular matrix and studying the deepest cell behaviours. From biochemical point of view, it is well known how short peptide with a specific sequence could mimic some functional epitopes of native proteins and then, stimulate in the same way the functional role of native proteins, ideally promoting fundamental biological processes. Among them β-Thymosin Peptide (Tβ4) and Human Vasonectin Peptide (HVP) exert a pro-angiogenic activity or adhesion activity through interaction with actin binding site, promoting Vascular Endothelial Growth Factor (VEGF) expression. Here, it has been presented a new collagen bio-conjugation with these peptides and outcomes. At the same time, also oxygen level is a crucial parameter for the tissue development both in vitro and in vivo because in the absence of tissue perfusion, or any adequate solution, starts to experience metabolic suffering. Perfluorocarbons (PFC), in the last decades, have been gained more interest due to their ability in oxygen storage or oxygen carriers. With these premises 5-(2,3,4,5,6-Pentafluorophenyl)-3-undecyl-1,2,4-oxadiazole was used to functionalize collagen based biomaterials. Developing in this way another type of bioinspired matrices. Regarding 3D matrices, two synthetic strategies have been proposed to develop hydrogels based biomaterials, in the first part, triazoledione chemistry has been proposed as a click-reaction for the chemoselective bioconjugation to tyrosine residues, meanwhile, in the second part, 3,4-Diethoxy-cyclobutene-1,2-dione (SQ) has been used for lysines chemoselective cross-linking. Finally, given the complexity behind recognition processes at cellular level, new glycol-functionalized dendrimers structures are described exploring carbohydrate chemistry. Here, we propose the synthesis of novel oxime-armed dendrimers structures which allow multivalent conjugation of carbohydrates through oxime coupling.

I tessuti biologici e gli organi, con l’avanzamento dell’età, traumi e difetti congeniti possono subire dei danneggiamenti e portare a differenti stati patologici. In queste circostanze, la medicina rigenerativa si propone di riparare e rimpiazzare i tessuti danneggiati. Differenti elementi chiave concorrono negli approcci della medicina rigenerativa; tra i quali, lo sviluppo e l’ingegnerizzazione dei biomateriali rappresenta un elemento cruciale; essi sono sviluppati per portare supporto meccanico e biochimico alle cellule circostanti al danno, contribuendo in questo modo la regolazione del comportamento cellulare promuovendo la rigenerazione dei tessuti danneggiati. Negli anni, differenti biomateriali innovativi sono stati sviluppati, evidenziando che, sia stimoli fisico-meccanici che biochimici sono in grado di guidare il comportamento delle cellule promuovendo specifiche risposte biologiche. Ad oggi i biomateriali vengono progettati mimando il più possibile le condizioni in vivo, replicando le naturali proprietà della matrice extracellulare. Durante il mio PhD differenti aree della chimica organica applicata hanno permesso lo sviluppo di nuovi biomateriali 2D o 3D, funzionalizzati e bioattivati, generando degli scaffold interessanti e con proprietà uniche per le applicazioni della medicina rigenerativa. In questa tesi sono raccolti i risultati ottenuti, con una speciale attenzione rivolta al mondo degli idrogel, materiali innovativi con un’architettura tridimensionale, in grado di mimare la matrice extracellulare e studiare i più profondi meccanismi del comportamento cellulare. Da un punto di vista biochimico, è ben noto come peptidi con sequenze specifiche potrebbero mimare alcuni epitopi funzionali di proteine strutturali quali il collagene, stimolando quindi una risposta analoga e promuovendo in alcuni casi l’espressione di fattori di crescita quali VEGF. Per questo motivo si è sviluppata una nuova matrice bidimensionale con questi peptidi coniugati e i risultati sono altrettanto riportati. Analogamente, anche il livello di ossigeno rappresenta un parametro cruciale per lo sviluppo dei tessuti, sia in vitro che in vivo, in quanto la sua assenza, e più in generale l’assenza di un’adeguata perfusione porta ad uno stato di sofferenza metabolica cellulare impedendo la crescita e lo sviluppo di nuovi tessuti. I Perfluorocarburi (PFCs) negli ultimi anni hanno guadagnato notevole interesse a causa della loro abilità di aumentare la concentrazione di ossigeno a livello della superficie, possibile grazie alle loro proprietà. Con queste premesse 5-(2,3,4,5,6-Pentafluorofenil)-3-undecil-1,2,4-ossadiazoli sono stati usati come modello “PFCs” per funzionalizzare matrici di collagene 2D; sviluppando in questo modo nuovi scaffold. A riguardo delle matrici 3D invece, due vie strategiche per il loro ottenimento sono state messe a punto, nella prima; linkers con estremità triazolinedioniche sono stati sfruttati per la reticolazione chemo-selettiva delle tirosine contenute nella gelatina; successivamente, in un secondo contesto il 4-Dietossi-ciclobutene-1,2-dione (SQ) è stato selezionato per il legame chemo-selettivo delle lisine. Entrambe le reticolazioni hanno portato a nuovi idrogel con proprietà uniche che sono state valutate sia da un punto di vista chimico-fisico, sia da un punto di vista biologico. In fine, data la complessità degli eventi responsabili del riconoscimento cellulare, nuovi dendrimeri funzionalizzati con epitopi saccaradici sono stati sviluppati, esplorando il mondo della chimica dei carboidrati. Qui, proponiamo la sintesi di nuove strutture dendrimeriche equipaggiate con estremita alcossi-amminiche in grado di portare ad una coniugazione multivalente di carboidrati, mediante la formazione di ossime.

(2019). Design and Synthesis of Nanostructured Biomaterials for regenerative medicine. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2019).

Design and Synthesis of Nanostructured Biomaterials for regenerative medicine

GUIZZARDI, ROBERTO
2019

Abstract

Biological tissues and organs, with the age, diseases, trauma, or eventually congenital defects can breakdown and lead to different pathological states. In these circumstances, regenerative medicine has the goal to restore and replace damaged tissues. Different key elements can be involved into regenerative approaches; among them, bio-scaffolds engineering may be crucial, developed to afford mechanical and signalling support to surrounding cells, contributing to directing cell fate toward biological regeneration. Over the years, several innovative bio-materials have been developed, highlighting that both physical and biochemical signals are able to drive cell fate toward specific biological responses. Nowadays, bio-materials can be divided into natural or artificial scaffolds and can be efficiently projected in order to fine-modulate mechanical properties resembling natural tissues (i.e., hardness for bone, elasticity for blood vessels, or cartilage), or to mimic the native cell microenvironment, i.e. the extra-cellular matrix (ECM), , , including complex biochemical signals. In this PhD course several areas of applied organic chemistry allowed to synthesize new functionalized 2D or 3D scaffold and glycol-dendrimers, giving new interesting biomaterials for tissue engineering applications. In this thesis there are collected results, with a special attention on hydrogels synthesis, as a 3D scaffold, to mimic extra-cellular matrix and studying the deepest cell behaviours. From biochemical point of view, it is well known how short peptide with a specific sequence could mimic some functional epitopes of native proteins and then, stimulate in the same way the functional role of native proteins, ideally promoting fundamental biological processes. Among them β-Thymosin Peptide (Tβ4) and Human Vasonectin Peptide (HVP) exert a pro-angiogenic activity or adhesion activity through interaction with actin binding site, promoting Vascular Endothelial Growth Factor (VEGF) expression. Here, it has been presented a new collagen bio-conjugation with these peptides and outcomes. At the same time, also oxygen level is a crucial parameter for the tissue development both in vitro and in vivo because in the absence of tissue perfusion, or any adequate solution, starts to experience metabolic suffering. Perfluorocarbons (PFC), in the last decades, have been gained more interest due to their ability in oxygen storage or oxygen carriers. With these premises 5-(2,3,4,5,6-Pentafluorophenyl)-3-undecyl-1,2,4-oxadiazole was used to functionalize collagen based biomaterials. Developing in this way another type of bioinspired matrices. Regarding 3D matrices, two synthetic strategies have been proposed to develop hydrogels based biomaterials, in the first part, triazoledione chemistry has been proposed as a click-reaction for the chemoselective bioconjugation to tyrosine residues, meanwhile, in the second part, 3,4-Diethoxy-cyclobutene-1,2-dione (SQ) has been used for lysines chemoselective cross-linking. Finally, given the complexity behind recognition processes at cellular level, new glycol-functionalized dendrimers structures are described exploring carbohydrate chemistry. Here, we propose the synthesis of novel oxime-armed dendrimers structures which allow multivalent conjugation of carbohydrates through oxime coupling.
CIPOLLA, LAURA FRANCESCA
medicina rigenerativ; biomateriali; rigenerazione tessut; bioconiugazioni; peptides
regenerative medicin; biomaterials; tissue regeneration; bioconjugation; peptides
CHIM/06 - CHIMICA ORGANICA
English
19-feb-2019
SCIENZE CHIMICHE, GEOLOGICHE E AMBIENTALI - 94R
31
2017/2018
open
(2019). Design and Synthesis of Nanostructured Biomaterials for regenerative medicine. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2019).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_784899.pdf

accesso aperto

Descrizione: tesi di dottorato
Dimensione 6.38 MB
Formato Adobe PDF
6.38 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/241323
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact