Montane vegetation is traditionally known to be particularly sensitive to climate changes. The strong elevational climatic gradient that characterises mountain areas results in a steep ecological slope, with several ecotones occurring in a small area. Pollen sequences investigated in or shortly above the modern timberline ecotone are ideal archives to analyze the relationships between climate and ecosystems. Quantitative reconstruction of past climate conditions from fossil pollen records requires understanding modern pollen representation along climatic and ecological gradients. The aims of this PhD research are the development of modern pollen-vegetation-climate elevational transects, model processing and validation for evaluating pollen-climate relationships thanks to elevational gradients, looking for new high-resolution natural archives to obtain proxy data and to reconstruct paleoenvironmental and palaeoclimatic changes during the Holocene, the application of these models to pollen-stratigraphical data and comparing the results with different proxy-based reconstructions. The importance of local elevational transects of modern pollen samples with site-specific temperature as a tool for paleoclimate reconstructions in the Alps was demonstrated. The two elevational transects (La Thuile Valley and Upper Brembana Valley) were developed to derive consistent local pollen-climate correlations, to find sensitive pollen taxa useful for paleoclimate reconstructions; to estimate the effects of local parameters (elevational lapse rate, climate, uphill pollen transport and human impact) and were used as test sets to evaluate pollen-climate models based on calibration sets extracted from the European Modern Pollen Database. Modern pollen assemblages-vegetation-climate relationships along an elevational gradient in the Upper Brembana Valley were investigated. Here modern pollen assemblages (pollen traps and moss samples), vegetation, elevation and climate have been collected at 16 sampling sites placed along an elevational gradient stretching from 1240 m asl to 2390 m asl. The results of CCA analysis demonstrated a general good agreement with previous studies, which identified elevation as the main gradient in the variation of modern pollen and vegetation assemblages in mountain areas. The stratigraphic study of paleoecological and sedimentary proxies in the Armentarga peat bog allowed to reconstruct the vegetation and climate history during the last 10 ka in a high-elevation, oceanic district of the Italian Alps. Quantitative reconstructions of Tjuly and Pann were obtained and validated by applying numerical transfer functions built on an extensive calibration pollen-climate dataset. The palaeobotanical record of the Armentarga peat bog has shown this elevational vegetation arrangement to be primarily driven by a Middle to late Holocene precipitation increase, substantially independent from the millennial sequence of thermal anomalies already known from other high-elevation Alpine proxies (i.e. glaciers, timberline, chironomids, speleothems). Changes in annual precipitation occurred in three main steps during the Holocene, starting with a moderately humid early Holocene marked by early occurrence of the Alnus viridis dwarf forests, and followed by a first step of precipitation increase starting at 6.2 ka cal BP. A prominent step forward occurred at the Middle to Late Holocene transition, dated between 4.7 and 3.9 ka at the Armentarga site, which led to present values typical for oceanic mountain climates (Pann 1700-1850 mm) and was probably accompanied by increased snowfall and runoff, and had a major impact on timberline depression and grassland expansion.
La vegetazione di ambiente montano è nota per essere sensibile alle variazioni climatiche. Il forte gradiente climatico altitudinale, che caratterizza le aree montane, dà luogo ad un marcato gradiente ecologico, in cui numerosi ecotoni sono presenti in una piccola area. Sequenze polliniche investigate all’interno o poco al di sopra dell’ecotono attuale della timberline sono archivi ideali per investigare le relazioni esistenti fra clima ed ecosistemi. Ricostruzioni quantitative delle condizioni climatiche del passato da record pollinici fossili richiedono la comprensione della rappresentazione pollinica attuale lungo gradienti climatici ed ecologici. Obbiettivi di questa ricerca di dottorato sono: lo sviluppo di transetti altitudinali di polline-vegetazione-clima attuale, l’elaborazione di modelli e la loro validazione per valutare le relazioni polline-clima grazie a gradienti altitudinali, la ricerca di nuovi archivi naturali ad alta risoluzione per ottenere dati proxy e ricostruire le variazioni paleoambientali e paleoclimatiche durante l’Olocene, l’applicazione di questi modelli ai dati pollinici stratigrafici ed infine il confronto dei risultati con diverse ricostruzioni su base proxy. E’ stata dimostrata l’importanza di transetti altitudinali locali con campioni pollinici moderni e temperature sito-specifiche come strumento per le ricostruzioni climatiche. Sono stati sviluppati due transetti altitudinali (la Valle di La Thuile e l’Alta Val Brembana) per ottenere consistenti correlazioni locali polline-clima, per trovare taxa pollinici sensibili utili per le ricostruzioni paleoclimatiche, per stimare gli effetti di parametri locali (lapse rate, clima, trasporto di polline verso l’alto e impatto antropico) e infine sono stati utilizzati come test sets per valutare i modelli polline-clima basati su calibration sets estratti dall’European Modern Pollen Database. Sono state investigate le relazioni rappresentazione pollinica attuale-vegetazione-clima lungo un gradiente altitudinale in Alta Val Brembana. Qui la rappresentazione pollinica attuale (trappole polliniche e campioni di muschio), vegetazione, quota e clima sono stati rilevati in 16 siti di campionamento situati lungo un gradiente altitudinale da 1240 m slm a 2390 m slm. I risultati della CCA mostrano una buona concordanza con studi precedenti, che hanno individuato la quota come il maggior gradiente nella variazione della rappresentazione pollinica attuale e della vegetazione in aree montane. Lo studio stratigrafico di proxies paleoecologici e sedimentari nella torbiera Armentarga hanno permesso di ricostruire la vegetazione e il clima negli ultimi 10 ka in un distretto oceanico di alta quota delle Alpi Italiane. Sono state ottenute e validate ricostruzioni quantitative di Tluglio e Pann applicando funzioni di trasferimento create da un vasto dataset di calibrazione polline-clima. Il record paleobotanico proveniente dalla torbiera Armentarga ha mostrato che questa composizione altitudinale della vegetazione è principalmente guidata da un aumento di precipitazioni nel medio-tardo Olocene, indipendente dalle sequenze millenarie di anomalie termiche già note da altri proxies alpini di alta quota (ad es. ghiacciai, timberline, chironomidi, speleotemi). Le variazioni delle precipitazioni annuali durante l’Olocene sono avvenute in tre step principali, partendo da un inizio Olocene moderatamente umido, caratterizzato dalla presenza precoce di foreste di Alnus viridis e seguito da un primo incremento delle precipitazioni a partire da 6.2 ka cal BP. Uno step prominente in avanti avvenne nella transizione medio-tardo Olocene, datata alla torbiera Armentarga tra 4.7 e 3.9 ka, che ha portato verso i valori attuali tipici di clima oceanici montani (Pann 1700-1850 mm) ed è stato probabilmente accompagnato da un incremento di precipitazioni nevose e runoff ed ha avuto un maggior impatto sulla depressione della timberline e l’espansione di praterie.
(2019). Quantitative reconstructions of climatic series in mountain environment based on paleoecological and ecological data. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2019).
Quantitative reconstructions of climatic series in mountain environment based on paleoecological and ecological data
FURLANETTO, GIULIA
2019
Abstract
Montane vegetation is traditionally known to be particularly sensitive to climate changes. The strong elevational climatic gradient that characterises mountain areas results in a steep ecological slope, with several ecotones occurring in a small area. Pollen sequences investigated in or shortly above the modern timberline ecotone are ideal archives to analyze the relationships between climate and ecosystems. Quantitative reconstruction of past climate conditions from fossil pollen records requires understanding modern pollen representation along climatic and ecological gradients. The aims of this PhD research are the development of modern pollen-vegetation-climate elevational transects, model processing and validation for evaluating pollen-climate relationships thanks to elevational gradients, looking for new high-resolution natural archives to obtain proxy data and to reconstruct paleoenvironmental and palaeoclimatic changes during the Holocene, the application of these models to pollen-stratigraphical data and comparing the results with different proxy-based reconstructions. The importance of local elevational transects of modern pollen samples with site-specific temperature as a tool for paleoclimate reconstructions in the Alps was demonstrated. The two elevational transects (La Thuile Valley and Upper Brembana Valley) were developed to derive consistent local pollen-climate correlations, to find sensitive pollen taxa useful for paleoclimate reconstructions; to estimate the effects of local parameters (elevational lapse rate, climate, uphill pollen transport and human impact) and were used as test sets to evaluate pollen-climate models based on calibration sets extracted from the European Modern Pollen Database. Modern pollen assemblages-vegetation-climate relationships along an elevational gradient in the Upper Brembana Valley were investigated. Here modern pollen assemblages (pollen traps and moss samples), vegetation, elevation and climate have been collected at 16 sampling sites placed along an elevational gradient stretching from 1240 m asl to 2390 m asl. The results of CCA analysis demonstrated a general good agreement with previous studies, which identified elevation as the main gradient in the variation of modern pollen and vegetation assemblages in mountain areas. The stratigraphic study of paleoecological and sedimentary proxies in the Armentarga peat bog allowed to reconstruct the vegetation and climate history during the last 10 ka in a high-elevation, oceanic district of the Italian Alps. Quantitative reconstructions of Tjuly and Pann were obtained and validated by applying numerical transfer functions built on an extensive calibration pollen-climate dataset. The palaeobotanical record of the Armentarga peat bog has shown this elevational vegetation arrangement to be primarily driven by a Middle to late Holocene precipitation increase, substantially independent from the millennial sequence of thermal anomalies already known from other high-elevation Alpine proxies (i.e. glaciers, timberline, chironomids, speleothems). Changes in annual precipitation occurred in three main steps during the Holocene, starting with a moderately humid early Holocene marked by early occurrence of the Alnus viridis dwarf forests, and followed by a first step of precipitation increase starting at 6.2 ka cal BP. A prominent step forward occurred at the Middle to Late Holocene transition, dated between 4.7 and 3.9 ka at the Armentarga site, which led to present values typical for oceanic mountain climates (Pann 1700-1850 mm) and was probably accompanied by increased snowfall and runoff, and had a major impact on timberline depression and grassland expansion.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_809217.pdf
Accesso Aperto
Descrizione: tesi di dottorato
Dimensione
12.37 MB
Formato
Adobe PDF
|
12.37 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.