Neural oscillations are considered to be the building blocks of cognitive functioning, and in the last decades neuroscientists have developed fundamental theories on their role in brain dynamics. Recently, a growing body of evidences has shown that ongoing oscillatory activity can account for a considerable amount of variability in behavioral performance and in neurophysiological response. In the domain of visual perception, a crucial role is played by neural oscillations within alpha frequency range. Alpha activity is believed to exert an inhibitory function on stimulus processing and to reflect cortical excitability, both when it fluctuates spontaneously as well as when it is modulated, by top-down or bottom-up mechanisms. It has been recently suggested that alpha rhythm may not be considered as a unitary phenomenon; however, still little is known about the neural mechanisms associated with alpha activity as measured by non-invasive recordings. Furthermore, up to now most of the studies on the effects of ongoing alpha activity on visual perception focused on a special class of stimuli, i.e., with a near-threshold intensity, and much less is known about what happens in the response beyond sensory threshold. In the present work, we aimed at addressing these issues by studying the effects of ongoing alpha oscillations on perceptual and neurophysiological outcome in the visual domain. The first goal was to replicate recent findings on the effects of spontaneous fluctuations of pre-stimulus alpha power and phase on a visual detection task, by using near-threshold stimuli. In addition to the original study, the use of magnetoencephalography allowed us to reconstruct brain sources of pre-stimulus and evoked activity. In a second study, we aimed at modulating ongoing alpha activity by using a sensory deprivation paradigm, and tested the effects of such modulation by means of a wide range of stimulation intensities. The use of transcranial magnetic stimulation (TMS) with concurrent electroencephalography allowed to directly assess the neurophysiological and perceptual response to TMS, by means of TMS-evoked potentials and phosphene perception. Finally, in a third study we developed a formal model of the effects of ongoing alpha activity on visual perception, with the aim of disentangling possible neural mechanisms which cannot be discerned non-invasively. The model is based on cross-frequency interactions between alpha functional inhibition and gamma activity of sensory neurons and highlights the advantages of presenting a wide range of stimulus intensities in the study of the effects of pre-stimulus oscillatory activity, using a psychophysical approach. Taken together, our results are consistent with current literature about the inhibitory function played by ongoing alpha activity on visual perception. Indeed, both perceptual and neurophysiological response to an external stimulus were affected by pre-stimulus alpha activity, when it fluctuated spontaneously as well as when it was modulated by a sensory deprivation paradigm. Moreover, the present findings support the hypothesis that alpha oscillations subtend distinct mechanisms, and highlighted that new insights may arise from applying a psychophysical approach to the study of ongoing activity on perception. By using different methodological approaches, the present work provides novel advances in the field of non-invasive investigation of ongoing oscillations on behavior, specifically on alpha inhibition of visual perception.
Le oscillazioni neurali sono considerate elementi costitutivi del funzionamento cognitivo, e negli ultimi decenni i neuroscienziati hanno sviluppato teorie fondamentali sul ruolo delle oscillazioni nelle dinamiche cerebrali. Recentemente, un crescente numero di evidenze ha mostrato come l’attività oscillatoria in corso possa rendere conto di una porzione considerevole della variabilità che si osserva nella prestazione comportamentale e nella risposta neurofisiologica. Nel dominio della percezione visiva, un ruolo cruciale è svolto dalle oscillazioni neurali nel range di frequenza alfa. Si ritiene che l’attività alfa eserciti una funzione inibitoria sull’elaborazione dello stimolo e rifletta l’eccitabilità corticale. E’ stato recentemente proposto che il ritmo alfa non possa essere considerato come un fenomeno unitario; tuttavia, si conosce ancora poco riguardo ai meccanismi neurali associati con l’attività alfa misurata attraverso registrazioni non invasive. Inoltre, fino ad ora la maggior parte degli studi sugli effetti dell’attività in corso sulla percezione visiva si è focalizzata su una particolare classe di stimoli, ovvero che hanno un’intensità vicino alla soglia sensoriale, e si conosce molto meno riguardo a cosa avvenga in risposta a stimoli la cui intensità va oltre il valore di soglia. Nel presente lavoro, ci siamo posti l’obiettivo di affrontare tali questioni studiando gli effetti dell’attività alfa in corso sulla risposta percettiva e neurofisiologica nel dominio visivo. Il primo obiettivo era quello di replicare alcune evidenze sugli effetti del power e della fase delle fluttuazioni spontanee dell’attività alfa pre-stimolo sulla detezione visiva, utilizzando stimoli a soglia. In aggiunta allo studio originale, l’utilizzo della magnetoencefalografia ci ha permesso di ricostruire le sorgenti cerebrali dell’attività oscillatoria pre-stimolo e dell’attività evocata. Un secondo studio era volto a modulare l’attività alfa in corso utilizzando un paradigma di deprivazione sensoriale, e testare gli effetti di tale modulazione attraverso un ampio range di intensità di stimolazione. L’uso della stimolazione magnetica transcranica (TMS) con simultanea registrazione elettroencefalografica ci ha permesso di valutare la risposta neurofisiologica e percettiva alla TMS, attraverso i potenziali evocati e la percezione dei fosfeni. Infine, in un terzo studio abbiamo sviluppato un modello formale sugli effetti dell’attività alfa in corso sulla percezione visiva, con l’obiettivo di distinguere possibili meccanismi neurali che non possono essere disambiguati a livello non-invasivo. Il modello è basato sulle interazioni cross-frequency tra l’inibizione funzionale di alfa e l’attività gamma dei neuroni sensoriali, e mette in evidenza i vantaggi di presentare un ampio range di intensità di stimoli nello studio degli effetti dell’attività oscillatoria, utilizzando un approccio psicofisico. Considerati insieme, i nostri risultati sono coerenti con la letteratura corrente riguardo alla funzione inibitoria svolta dall’attività alfa in corso sulla percezione visiva. Infatti, la risposta sia percettiva che neurofisiologica ad uno stimolo esterno era influenzata dall’attività alfa pre-stimolo, nelle fluttuazioni spontanee così come quando era modulata da un paradigma di deprivazione sensoriale. Inoltre, le presenti evidenze supportano l’ipotesi che le oscillazioni alfa sottendano meccanismi distinti, e mettono in luce come nuove intuizioni possano emergere dall’utilizzo di un approccio psicofisico allo studio dell’attività oscillatoria in corso sulla percezione. Utilizzando diversi approcci metodologici, il presente lavoro fornisce nuovi avanzamenti nello studio non-invasivo delle oscillazioni sul comportamento, nello specifico sull’inibizione dell’attività alfa sulla percezione visiva.
(2019). Impact of ongoing alpha oscillations on visual perception and neurophysiological response: an integration with a psychophysical approach. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2019).
Impact of ongoing alpha oscillations on visual perception and neurophysiological response: an integration with a psychophysical approach
ZAZIO, AGNESE
2019
Abstract
Neural oscillations are considered to be the building blocks of cognitive functioning, and in the last decades neuroscientists have developed fundamental theories on their role in brain dynamics. Recently, a growing body of evidences has shown that ongoing oscillatory activity can account for a considerable amount of variability in behavioral performance and in neurophysiological response. In the domain of visual perception, a crucial role is played by neural oscillations within alpha frequency range. Alpha activity is believed to exert an inhibitory function on stimulus processing and to reflect cortical excitability, both when it fluctuates spontaneously as well as when it is modulated, by top-down or bottom-up mechanisms. It has been recently suggested that alpha rhythm may not be considered as a unitary phenomenon; however, still little is known about the neural mechanisms associated with alpha activity as measured by non-invasive recordings. Furthermore, up to now most of the studies on the effects of ongoing alpha activity on visual perception focused on a special class of stimuli, i.e., with a near-threshold intensity, and much less is known about what happens in the response beyond sensory threshold. In the present work, we aimed at addressing these issues by studying the effects of ongoing alpha oscillations on perceptual and neurophysiological outcome in the visual domain. The first goal was to replicate recent findings on the effects of spontaneous fluctuations of pre-stimulus alpha power and phase on a visual detection task, by using near-threshold stimuli. In addition to the original study, the use of magnetoencephalography allowed us to reconstruct brain sources of pre-stimulus and evoked activity. In a second study, we aimed at modulating ongoing alpha activity by using a sensory deprivation paradigm, and tested the effects of such modulation by means of a wide range of stimulation intensities. The use of transcranial magnetic stimulation (TMS) with concurrent electroencephalography allowed to directly assess the neurophysiological and perceptual response to TMS, by means of TMS-evoked potentials and phosphene perception. Finally, in a third study we developed a formal model of the effects of ongoing alpha activity on visual perception, with the aim of disentangling possible neural mechanisms which cannot be discerned non-invasively. The model is based on cross-frequency interactions between alpha functional inhibition and gamma activity of sensory neurons and highlights the advantages of presenting a wide range of stimulus intensities in the study of the effects of pre-stimulus oscillatory activity, using a psychophysical approach. Taken together, our results are consistent with current literature about the inhibitory function played by ongoing alpha activity on visual perception. Indeed, both perceptual and neurophysiological response to an external stimulus were affected by pre-stimulus alpha activity, when it fluctuated spontaneously as well as when it was modulated by a sensory deprivation paradigm. Moreover, the present findings support the hypothesis that alpha oscillations subtend distinct mechanisms, and highlighted that new insights may arise from applying a psychophysical approach to the study of ongoing activity on perception. By using different methodological approaches, the present work provides novel advances in the field of non-invasive investigation of ongoing oscillations on behavior, specifically on alpha inhibition of visual perception.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_802624.pdf
Accesso Aperto
Descrizione: tesi di dottorato
Dimensione
3.44 MB
Formato
Adobe PDF
|
3.44 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.