The work was divided into two parts. The first part was a study on the gas adsorption capacity of porous materials, in particular on the capacity of porous organic systems in methane storage. The work was based on a systematic study of a series of organic porous materials, of high pressure methane storage capacities. The synthesized materials were compared with some commercial porous materials with high performance in storage and showed an increase in the quantities of gas possibly transportable inside them. The materials were also compared with the methods commonly used for the transport of methane, resulting in potential candidates for this application, considering the ease of production and both thermal and chemical stability. Another series of porous materials with slight changes to the main structure, has shown, however, the possibility of modifying the interaction of the material with the different gases going to obtain compounds with slight structural changes but with different physical interactions. In a second part I focused on using the pores of these materials as reactors for confined polymerizations. The work led to the development of anionic polymerization in these materials for the first time. This new and innovative technique has allowed us to produce polymers with distinct tactics and isolated chains. Subsequently, it was decided to chemically anchor the porous material to the growing polymer. This has led to polymers with structures different from those obtainable with the classic polymerizations and to the development of a new type of completely carbonaceous and chemically bound composite that prevents the problem of de-mixing. Subsequently, the use of materials with one-dimensional pores, led to the development of polyacrylonitrile within the material channels. Polyacrylonitrile was subsequently converted through carbon fiber thermal treatments into the porous material. The thermal treatment of polyacrylonitrile inside the pores has led to a structure with fewer defects than the bulk treatment, the best structure, for subsequent heat treatments will lead to a carbon fiber with mechanical characteristics better than those of a bulk synthesis.
Il lavoro si è diviso in due parti. La prima parte è stato uno studio sulle capacità di adsorbimento di gas dei materiali porosi, in particolare sulla capacità di sistemi porosi organici nello stoccaggio di metano. Il lavoro si è basato su uno studio sistematico di una serie di materiali porosi organici, delle capacità di stoccaggio di metano ad alta pressione. I materiali sintetizzati sono stati confrontati con alcuni materiali porosi commerciali con alte prestazioni nello stoccaggio e hanno evidenziato un aumento delle quantità di gas possibilmente trasportabile al loro interno. I materiali sono stati confrontanti anche con i metodi comunemente usati per il trasporto di metano, risultando dei potenziali candidati per tale applicazione, considerando la facilità di produzione e la stabilità sia termica che chimica. Un'altra serie di materiali porosi con leggere modifiche alla struttura principale, ha dimostrato invece, la possibilità di modificare l'interazione del materiale con i differenti gas andando a ottenere dei composti con leggere modifiche strutturali ma con interazioni fisiche differenti. In una seconda parte mi sono concentrato sull'utilizzo dei pori di questi materiali come reattori per polimerizzazioni confinate. Il lavoro ha portato allo sviluppo per la prima volta della polimerizzazione anionica all'interno di tali materiali. Questa nuova e innovativa tecnica ha permesso di produrre polimeri con tatticità distinta e catene isolate. Successivamente, si è deciso di ancorare chimicamente il materiale poroso al polimero in crescita. Questo ha portato a polimeri con strutture diverse da quelle ottenibili con le classiche polimerizzazioni e allo sviluppo di un nuovo tipo di composito completamente carbonioso e chimicamente legato che impedisce il problema dello smiscelamento. Successivamente, l'utilizzo di materiali con pori monodimensionali, ha portato allo sviluppo di poliacrilonitrile all'interno dei canali del materiale. Il poliacrilonitrile successivamente è stato convertito attraverso trattamenti termici in fibra di carbonio, all'interno del materiale poroso. Il trattamento termico del poliacrilonitrile all'interno dei pori ha portato ad una struttura con meno difetti rispetto al trattamento in bulk, la miglior struttura, per successivi trattamenti termici porterà ad una fibra di carbonio con caratteristiche meccaniche migliori di quelle di una sintesi in bulk.
(2019). FROM HIGH-PRESSURE TO IN-SITU POLYMERIZATION: DESIGN AND SYNTHESIS, NEW CHALLENGING OF POROUS MATERIALS. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2019).
FROM HIGH-PRESSURE TO IN-SITU POLYMERIZATION: DESIGN AND SYNTHESIS, NEW CHALLENGING OF POROUS MATERIALS
PIGA, DANIELE
2019
Abstract
The work was divided into two parts. The first part was a study on the gas adsorption capacity of porous materials, in particular on the capacity of porous organic systems in methane storage. The work was based on a systematic study of a series of organic porous materials, of high pressure methane storage capacities. The synthesized materials were compared with some commercial porous materials with high performance in storage and showed an increase in the quantities of gas possibly transportable inside them. The materials were also compared with the methods commonly used for the transport of methane, resulting in potential candidates for this application, considering the ease of production and both thermal and chemical stability. Another series of porous materials with slight changes to the main structure, has shown, however, the possibility of modifying the interaction of the material with the different gases going to obtain compounds with slight structural changes but with different physical interactions. In a second part I focused on using the pores of these materials as reactors for confined polymerizations. The work led to the development of anionic polymerization in these materials for the first time. This new and innovative technique has allowed us to produce polymers with distinct tactics and isolated chains. Subsequently, it was decided to chemically anchor the porous material to the growing polymer. This has led to polymers with structures different from those obtainable with the classic polymerizations and to the development of a new type of completely carbonaceous and chemically bound composite that prevents the problem of de-mixing. Subsequently, the use of materials with one-dimensional pores, led to the development of polyacrylonitrile within the material channels. Polyacrylonitrile was subsequently converted through carbon fiber thermal treatments into the porous material. The thermal treatment of polyacrylonitrile inside the pores has led to a structure with fewer defects than the bulk treatment, the best structure, for subsequent heat treatments will lead to a carbon fiber with mechanical characteristics better than those of a bulk synthesis.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_770771.pdf
accesso aperto
Descrizione: tesi di dottorato
Dimensione
5.16 MB
Formato
Adobe PDF
|
5.16 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.