This PhD thesis has been focused on two main themes related to solar energy exploitation for solar fuels and electricity production. The first topic, that was the main focus of this work, has been extensively studied broaching several issues, aiming to a so called “artificial leaf”, a prototype where artificial photosynthesis can take place generating fuels (hydrogen) starting from water and sunlight. The development of renewable technologies is mandatory to limit exploitation of fossil fuels, but they usually generate electricity, and stocking electric energy is a difficult task. The development of a system capable of producing solar fuels using sunlight is thus demanding. Solar fuels are molecules that can be synthesised through a photo-activated process and that can be easily stocked and released when needed. Such a system is called an “artificial leaf”, since its working principles are the same of natural photosynthesis. In particular, the aim of the device that has been studied during this thesis was to carry out the water oxidation process, that means producing oxygen and protons from water and light thanks to a photosensitized photoanode. Protons are then reduced to hydrogen by a passive cathode. In parallel, an established technology has been used for the production of solar electricity, namely Dye Sensitized Solar Cells (DSSC). In particular, the attention has been focused on the electrolyte composition, substituting the commonly used electrolyte solvent, based on volatile organic compounds, with eco-friendly and innovative solvents. In fact, one part of this PhD project has been devoted to the study of DSSC containing eco-friendly solvents in the electrolyte solution, namely Deep Eutectic Solvents (DES). Traditional organic solvents used for this scope (usually nitriles mixtures) have many drawbacks, such as volatility and often toxicity. Leaks are thus a problem, because this would involve toxic vapours in the environment and a fast deterioration of the performance of the cell, that cannot work without the liquid electrolyte. DES instead are not volatile and are generally safe and cheap, showing different properties, that can be widely tuned according to the specific need. Two different DES have been studied, a hydrophilic and a hydrophobic one (respectively, a mixture of choline chloride, also known as Vitamin B4, and urea, diluted with water, and a mixture of DL-menthol and acetic acid, diluted with ethanol) with proper dyes absorbed onto TiO2. Many variables have been considered, such as different TiO2 precursors and layer thickness, different iodides (both inorganic and ionic liquids, IL), different ions concentration, presence of additives and of disaggregating agents. The efficiency of the optimized cell was 1.9% at 0.5 sun for the hydrophilic system and 2.5% at 1 sun for the hydrophobic solvent, compatible with traditional organic-solvent-based cells. Concerning the production of hydrogen from the artificial photosynthesis process, metal-free organic sensitizers with di-branched configuration, bearing different heteroaromatic donor moieties, have been used in a systematic study upon the effect of the sensitizers at the photoanode in the photoelectrochemical hydrogen production. Namely, phenothiazine, phenoxazine and carbazole based dyes have been tested in presence of a sacrificial electron donor (SED) to evaluate charge transfer phenomena and the external quantum efficiency (EQE) of the system. Moreover, the three sensitizers have been tested in presence of a common water oxidation catalyst (WOC) to preliminary evaluate the stability in photoelectrochemical water splitting and hydrogen and oxygen evolution. According to experimental data, the phenothiazine based derivative PTZ-Th has been recognized as the best performing sensitizer, considering its superior light harvesting capability and more efficient electron injection into the semiconductor, in photoelectrochemical water splitting.

Il primo argomento, obiettivo principale di questo lavoro, è stato ampiamente studiato, con l'obiettivo di realizzare una "foglia artificiale", un prototipo in cui la fotosintesi artificiale possa aver luogo generando combustibili (idrogeno) a partire da acqua e luce. Lo sviluppo di tecnologie rinnovabili è necessario per limitare lo sfruttamento del petrolio, ma in genere producono energia elettrica il cui stoccaggio è difficile. Lo sviluppo di un sistema in grado di produrre combustibili solari è quindi impellente. I solar fuels sono molecole che possono essere sintetizzate attraverso un processo fotoattivato ed essere facilmente immagazzinate e rilasciate quando necessario. Tale sistema è chiamato "foglia artificiale" poiché i principi di funzionamento sono gli stessi della fotosintesi naturale. Lo scopo del dispositivo che è stato studiato durante questa tesi è di eseguire il processo di ossidazione dell'acqua, ovvero produrre ossigeno e protoni dall'acqua e dalla luce grazie a un fotoanodo sensibilizzato. I protoni vengono quindi ridotti a idrogeno mediante un catodo passivo. Parallelamente, una tecnologia consolidata è stata utilizzata per la produzione di energia solare, vale a dire le Dye Sensitized Solar Cells (DSSC). In particolare, l'attenzione è stata focalizzata sulla composizione dell'elettrolita, sostituendo il solvente comunemente utilizzato, basato su composti organici volatili, con solventi ecologici e innovativi. Infatti, una parte di questo progetto di dottorato è stata dedicata allo studio di DSSC contenenti solventi eco-compatibili nella soluzione elettrolitica, ovvero i Deep Eutectic Solvents (DES). I solventi organici tradizionali usati per questo scopo (solitamente miscele di nitrili) presentano molti inconvenienti, come la volatilità e spesso la tossicità. Le perdite sono quindi un problema, perché comporterebbero vapori tossici nell'ambiente e un rapido deterioramento delle prestazioni della cella, che non può funzionare senza elettrolita. I DES invece non sono volatili e sono generalmente sicuri ed economici, con proprietà diverse, che possono essere ampiamente adattate in base alle specifiche esigenze. Sono stati studiati due diversi DES, uno idrofilo e uno idrofobo (rispettivamente una miscela di cloruro di colina, nota anche come vitamina B4, e urea, diluita con acqua, e una miscela di DL-mentolo e acido acetico, diluiti con etanolo) con coloranti adeguati assorbiti su TiO2. Sono state considerate molte variabili, come diversi precursori di TiO2 e spessore degli strati, diversi ioduri (sia liquidi inorganici e ionici, IL), diversa concentrazione di ioni, presenza di additivi e di agenti disaggreganti. L'efficienza della cella ottimizzata è stata dell'1,9% a 0,5 sun per il sistema idrofilo e del 2,5% a 1 sun per il solvente idrofobo, compatibile con le tradizionali celle con solventi organici. Per quanto riguarda la fotosintesi artificiale, in un studio sistematico sull'effetto di fotosensibilizzatori nella produzione di idrogeno per via fotoelettrochimica sono stati utilizzati sensibilizzatori organici a configurazione ramificata, con diverse porzioni di donatori eteroaromatici. I colorantim a base di fenotiazina, fenossazina e carbazolo, sono stati testati in presenza di un donatore di elettroni sacrificale (SED) per valutare i fenomeni di trasferimento di carica e l'efficienza quantica esterna (EQE) del sistema. Inoltre, i tre sensibilizzatori sono stati testati in presenza di un catalizzatore per l’ossidazione dell'acqua per valutare la stabilità nella scissione dell'acqua fotoelettrochimica e l'evoluzione dei gas. Secondo i dati sperimentali, il colorante a base di fenotiazina PTZ-Th è stato il miglior sensibilizzatore, grazie alla sua superiore capacità di raccolta della luce e l'iniezione di elettroni più efficiente nel semiconduttore.

(2019). Materials and devices for solar generation of electricity and fuels. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2019).

Materials and devices for solar generation of electricity and fuels

BOLDRINI, CHIARA LILIANA
2019

Abstract

This PhD thesis has been focused on two main themes related to solar energy exploitation for solar fuels and electricity production. The first topic, that was the main focus of this work, has been extensively studied broaching several issues, aiming to a so called “artificial leaf”, a prototype where artificial photosynthesis can take place generating fuels (hydrogen) starting from water and sunlight. The development of renewable technologies is mandatory to limit exploitation of fossil fuels, but they usually generate electricity, and stocking electric energy is a difficult task. The development of a system capable of producing solar fuels using sunlight is thus demanding. Solar fuels are molecules that can be synthesised through a photo-activated process and that can be easily stocked and released when needed. Such a system is called an “artificial leaf”, since its working principles are the same of natural photosynthesis. In particular, the aim of the device that has been studied during this thesis was to carry out the water oxidation process, that means producing oxygen and protons from water and light thanks to a photosensitized photoanode. Protons are then reduced to hydrogen by a passive cathode. In parallel, an established technology has been used for the production of solar electricity, namely Dye Sensitized Solar Cells (DSSC). In particular, the attention has been focused on the electrolyte composition, substituting the commonly used electrolyte solvent, based on volatile organic compounds, with eco-friendly and innovative solvents. In fact, one part of this PhD project has been devoted to the study of DSSC containing eco-friendly solvents in the electrolyte solution, namely Deep Eutectic Solvents (DES). Traditional organic solvents used for this scope (usually nitriles mixtures) have many drawbacks, such as volatility and often toxicity. Leaks are thus a problem, because this would involve toxic vapours in the environment and a fast deterioration of the performance of the cell, that cannot work without the liquid electrolyte. DES instead are not volatile and are generally safe and cheap, showing different properties, that can be widely tuned according to the specific need. Two different DES have been studied, a hydrophilic and a hydrophobic one (respectively, a mixture of choline chloride, also known as Vitamin B4, and urea, diluted with water, and a mixture of DL-menthol and acetic acid, diluted with ethanol) with proper dyes absorbed onto TiO2. Many variables have been considered, such as different TiO2 precursors and layer thickness, different iodides (both inorganic and ionic liquids, IL), different ions concentration, presence of additives and of disaggregating agents. The efficiency of the optimized cell was 1.9% at 0.5 sun for the hydrophilic system and 2.5% at 1 sun for the hydrophobic solvent, compatible with traditional organic-solvent-based cells. Concerning the production of hydrogen from the artificial photosynthesis process, metal-free organic sensitizers with di-branched configuration, bearing different heteroaromatic donor moieties, have been used in a systematic study upon the effect of the sensitizers at the photoanode in the photoelectrochemical hydrogen production. Namely, phenothiazine, phenoxazine and carbazole based dyes have been tested in presence of a sacrificial electron donor (SED) to evaluate charge transfer phenomena and the external quantum efficiency (EQE) of the system. Moreover, the three sensitizers have been tested in presence of a common water oxidation catalyst (WOC) to preliminary evaluate the stability in photoelectrochemical water splitting and hydrogen and oxygen evolution. According to experimental data, the phenothiazine based derivative PTZ-Th has been recognized as the best performing sensitizer, considering its superior light harvesting capability and more efficient electron injection into the semiconductor, in photoelectrochemical water splitting.
ABBOTTO, ALESSANDRO
Water splitting; DSSC; DES; Idrogeno; Rinnovabili
Water splitting; Water oxydation; DSSC; DES; Rinnovabili
CHIM/06 - CHIMICA ORGANICA
English
15-feb-2019
SCIENZA E NANOTECNOLOGIA DEI MATERIALI - 79R
31
2017/2018
open
(2019). Materials and devices for solar generation of electricity and fuels. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2019).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_063524.pdf

accesso aperto

Descrizione: tesi di dottorato
Dimensione 7.74 MB
Formato Adobe PDF
7.74 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/241173
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact