Optical and scintillation properties of Pr-doped Li-glass, 20Al(PO 3)3-80LiF:Pr 3%, have been studied for applications in neutron detection systems. Based on optical transmission and reflectivity, the absorption coefficient and refractive index were calculated from the Beer Lambert law. The absorption edge was apparently shifted to the longer wavelength from 160 nm to 240 nm due to 4f → 5d transitions of Pr ions. The strong absorption peaks of praseodymium 4f → 4f transitions were observed from 420 nm to 500 nm and around 590 nm. The radio-luminescence spectrum excited by 241Am 5.5 MeV α source was measured. Strong emission peaks were observed around 250 nm. The α-ray excited pulse height spectrum and decay kinetics were also examined. Light yield was estimated to be 400 ± 40 photons/5.5 MeV α and the main component of the decay time was evaluated to be about 12 ns. Furthermore, the pulse height spectrum of the glass excited by 252Cf neutrons was also measured, and the light yield was estimated to be 140 ± 10 photons/neutron. © 2010 Elsevier B.V. All rights reserved.

Fukabori, A., Yanagida, T., Chani, V., Moretti, F., Pejchal, J., Yokota, Y., et al. (2011). Optical and scintillation properties of Pr-doped Li-glass for neutron detection in inertial confinement fusion process. JOURNAL OF NON-CRYSTALLINE SOLIDS, 357(3), 910-914 [10.1016/j.jnoncrysol.2010.12.010].

Optical and scintillation properties of Pr-doped Li-glass for neutron detection in inertial confinement fusion process

MORETTI, FEDERICO;
2011

Abstract

Optical and scintillation properties of Pr-doped Li-glass, 20Al(PO 3)3-80LiF:Pr 3%, have been studied for applications in neutron detection systems. Based on optical transmission and reflectivity, the absorption coefficient and refractive index were calculated from the Beer Lambert law. The absorption edge was apparently shifted to the longer wavelength from 160 nm to 240 nm due to 4f → 5d transitions of Pr ions. The strong absorption peaks of praseodymium 4f → 4f transitions were observed from 420 nm to 500 nm and around 590 nm. The radio-luminescence spectrum excited by 241Am 5.5 MeV α source was measured. Strong emission peaks were observed around 250 nm. The α-ray excited pulse height spectrum and decay kinetics were also examined. Light yield was estimated to be 400 ± 40 photons/5.5 MeV α and the main component of the decay time was evaluated to be about 12 ns. Furthermore, the pulse height spectrum of the glass excited by 252Cf neutrons was also measured, and the light yield was estimated to be 140 ± 10 photons/neutron. © 2010 Elsevier B.V. All rights reserved.
Articolo in rivista - Articolo scientifico
Absorption coefficients; Absorption edges; Absorption peaks; Beer Lambert law; Decay kinetics; Decay time; Emission peaks; Li-glass; Light yield; Main component; Neutron detection; Neutron detection system; Optical transmissions; Pr ions; Pulse height spectrum; Radio-luminescence; Scintillation properties; Scintillator, Absorption; Glass; Inertial confinement fusion; Light; Light transmission; Luminescence; Metal analysis; Neutron detectors; Neutrons; Praseodymium; Refractive index, Scintillation
English
2011
357
3
910
914
none
Fukabori, A., Yanagida, T., Chani, V., Moretti, F., Pejchal, J., Yokota, Y., et al. (2011). Optical and scintillation properties of Pr-doped Li-glass for neutron detection in inertial confinement fusion process. JOURNAL OF NON-CRYSTALLINE SOLIDS, 357(3), 910-914 [10.1016/j.jnoncrysol.2010.12.010].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/24108
Citazioni
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 15
Social impact