The use of therapeutic monoclonal antibodies (mAbs) has revolutionized cancer treatment. During the last decades, mAbs became very appealing also for nanotechnology. Indeed, they have been exploited as targeting moieties for nanoparticles, thanks to their high binding efficacy and target selectivity. However, the functionalization of NPs with mAbs is usually performed with the aim to ameliorate targeting, rather than to overcome mAbs limitations. Moreover, the therapeutic implications of nanoconjugation are generally poorly considered. In this thesis, I focused on the study of cancers with no efficient therapies available, such as brain cancers and triple negative breast cancer (TNBC), with the final goal to exploit nanoparticle (NP) conjugation as a tool to improve antibody-based therapies. In particular my work aimed at increasing the spectrum of action of already existing mAbs, making them suitable for new applications, either as the whole protein or as fragments. In Chapter 1, I used a recombinant human ferritin (HFn) as nanovector to promote mAbs permeation across the BBB to activate the ADCC response against brain cancer. Glioblastoma and HER2+ metastatic breast cancer were selected as brain tumor models. HFn was used as delivery system thanks to the ability to cross the BBB upon interaction with its receptor. Then, cetuximab or trastuzumab were linked to HFn and the maintenance of the cytotoxic activity of NPs was confirmed by in vitro assays. Next, we tested the ability of HFn- mAb to cross an in vitro model of BBB. Results showed that HFn-mAb proved to be effective in BBB crossing and that, after permeation, mAbs retained their biological activity against the targets, as assessed by MTS and ADCC assays. i These preliminary results support the use of HFn as efficient carrier to enhance mAbs permeation into the brain, without affecting their activity. In Chapter 2, half-chain fragments of cetuximab were conjugated to colloidal NPs (HC-CTX-NPs) to be investigated as surrogates of mAbs in TNBC. Three TNBC cell lines were selected according to EGFR expression and to diverse cetuximab sensitivity. The molecular mechanisms of action of HC-CTX- NPs, including cell targeting, interference with signaling pathways, proliferation, cell cycle, apoptosis and ADCC response, were investigated in TNBC cells. We found that HC-CTX-NPs were able to enhance the therapeutic efficacy and improve the target selectivity against sensitive, but unexpectedly also resistant, TNBC cells. Viability assays and signaling transduction modulation suggested that HC-CTX-NPs not only improved the antibody activity but also exerted different mechanisms of action to circumvent CTX resistance. Our results provide robust evidence of the potential of HC-CTX-NPs in the treatment of TNBC, which could improve curative efficiency, reducing dosages in both sensitive and resistant tumors.

L’utilizzo in clinica di anticorpi monoclonali (mAbs) ha rivoluzionato il trattamento del cancro. Negli ultimi 20 anni gli mAbs sono stati molto usati anche nel campo delle nanotecnologie dove, l’elevata specificità e selettività verso i target è stata sfruttata per aumentare la specificità di legame delle nanoparticelle (NPs) verso il bersaglio farmacologico, riducendo gli effetti collaterali dovuti alla diffusione passiva. Ad ogni modo, ad oggi, le implicazioni terapeutiche e gli effetti della coniugazione degli anticorpi sulle NPs, sono ancora poco considerati. In questa tesi mi sono focalizzata sullo studio di tumori per i quali non esistono ancora terapie adeguate, quali i tumori al cervello e al seno triplo negativo (TNBC), allo scopo di sfruttare le NPs come strumento per incrementare l’efficacia delle terapie basate sull’uso di mAbs. In particolare, il mio lavoro ha avuto come scopo l’incremento dello spettro di azione di mAbs, già approvati per uso clinico, rendendoli adatti a nuove applicazioni terapeutiche, sia come proteina intera sia come frammenti. Nel primo capitolo ho utilizzato una variante ricombinante di ferritina umana (HFn) come nanovettore per promuovere l’attraversamento della barriera emato-encefalica (BEE) di mAbs al fine di attivare la risposta immunitaria ADCC contro le cellule tumorali di cancro al cervello. Come modelli tumorali sono stati selezionati un tumore primario (Glioblastoma Multiforme) e un tumore secondario con metastasi cerebrali (tumore al seno HER2 positivo). HFn è stata scelta come sistema di trasporto grazie alla sua capacità di attraversare la BEE a seguito dell’interazione con il recettore TfR1. Ad essa ho coniugato gli anticorpi Trastuzumab e Cetuximab ed ho confermato, tramite saggi in vitro, il mantenimento della specificità di legame verso i target per entrambe le specie proteiche. Inoltre, ho valutato che, in seguito alla coniugazione su HFn, entrambi gli mAbs mantenessero le loro attività tossiche sulle cellule bersaglio. Infine, ho confermato che il nanoconiugato fosse in grado di attraversare un modello in vitro di BEE e che, dopo il passaggio, l’anticorpo mantenesse intatta la sua attività citotossica. Pertanto, i risultati preliminari ottenuti propongono HFn come promettente sistema per il trasporto di mAbs oltre la BEE per il trattamento di patologie cerebrali. Nel secondo capitolo, invece, ho coniugato le singole catene dell’anticorpo Cetuximab (CTX) a nanoparticelle di ossido di ferro, al fine di indagarne l’utilizzo come possibili surrogati dell’anticorpo intero nel trattamento del TNBC. Per questo studio abbiamo selezionato 3 linee cellulari di TNBC che differissero sia in termini di mutazioni di proteine coinvolte nella via di trasduzione del segnale del recettore EGFR, sia in termini di responsività al trattamento con CTX. In questo studio abbiamo indagato la specificità di legame verso il recettore, la capacità di interferire con i pathways molecolari, l’effetto sulla proliferazione e sul ciclo cellulare, l’apoptosi indotta e l’attivazione della risposta immunitaria ADCC, confrontando sempre l’azione del nanoconiugato con quella di CTX. I dati ottenuti hanno dimostrato che la nanoformulazione è in grado di migliorare l’azione tossica dell’anticorpo nelle cellule sensibili al trattamento con CTX ma, inaspettatamente, anche in cellule TNBC resistenti. Inoltre, i saggi di proliferazione e di analisi delle vie di segnalazione a valle, hanno evidenziato che la nanoformulazione è in grado di esercitare la sua azione attivando meccanismi molecolari differenti rispetto al CTX, permettendo l’elusione dei meccanismi di resistenza. I dati ottenuti mettono in evidenza l’enorme potenziale terapeutico della nostra nanoformulazione nel trattamento del TNBC. Nel dettaglio, la nanoformulazione potrebbe migliorare l’efficacia del trattamento con Cetuximab, riducendo anche le dosi, in tumori sensibili e resistenti.

(2019). Exploiting Nanotechnology to Improve Cancer Immunotherapy and Overcome Biological Barriers. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2019).

Exploiting Nanotechnology to Improve Cancer Immunotherapy and Overcome Biological Barriers

RIZZUTO, MARIA ANTONIETTA
2019

Abstract

The use of therapeutic monoclonal antibodies (mAbs) has revolutionized cancer treatment. During the last decades, mAbs became very appealing also for nanotechnology. Indeed, they have been exploited as targeting moieties for nanoparticles, thanks to their high binding efficacy and target selectivity. However, the functionalization of NPs with mAbs is usually performed with the aim to ameliorate targeting, rather than to overcome mAbs limitations. Moreover, the therapeutic implications of nanoconjugation are generally poorly considered. In this thesis, I focused on the study of cancers with no efficient therapies available, such as brain cancers and triple negative breast cancer (TNBC), with the final goal to exploit nanoparticle (NP) conjugation as a tool to improve antibody-based therapies. In particular my work aimed at increasing the spectrum of action of already existing mAbs, making them suitable for new applications, either as the whole protein or as fragments. In Chapter 1, I used a recombinant human ferritin (HFn) as nanovector to promote mAbs permeation across the BBB to activate the ADCC response against brain cancer. Glioblastoma and HER2+ metastatic breast cancer were selected as brain tumor models. HFn was used as delivery system thanks to the ability to cross the BBB upon interaction with its receptor. Then, cetuximab or trastuzumab were linked to HFn and the maintenance of the cytotoxic activity of NPs was confirmed by in vitro assays. Next, we tested the ability of HFn- mAb to cross an in vitro model of BBB. Results showed that HFn-mAb proved to be effective in BBB crossing and that, after permeation, mAbs retained their biological activity against the targets, as assessed by MTS and ADCC assays. i These preliminary results support the use of HFn as efficient carrier to enhance mAbs permeation into the brain, without affecting their activity. In Chapter 2, half-chain fragments of cetuximab were conjugated to colloidal NPs (HC-CTX-NPs) to be investigated as surrogates of mAbs in TNBC. Three TNBC cell lines were selected according to EGFR expression and to diverse cetuximab sensitivity. The molecular mechanisms of action of HC-CTX- NPs, including cell targeting, interference with signaling pathways, proliferation, cell cycle, apoptosis and ADCC response, were investigated in TNBC cells. We found that HC-CTX-NPs were able to enhance the therapeutic efficacy and improve the target selectivity against sensitive, but unexpectedly also resistant, TNBC cells. Viability assays and signaling transduction modulation suggested that HC-CTX-NPs not only improved the antibody activity but also exerted different mechanisms of action to circumvent CTX resistance. Our results provide robust evidence of the potential of HC-CTX-NPs in the treatment of TNBC, which could improve curative efficiency, reducing dosages in both sensitive and resistant tumors.
TORTORA, PAOLO
PROSPERI, DAVIDE
nanoparticelle; anticorpi; immunoterapia; cancro; sistemi di trasporto
nanoparticles; monoclonal antibody; immunotherapy; cancer; sistemi di trasporto
BIO/10 - BIOCHIMICA
Italian
7-feb-2019
BIOLOGIA E BIOTECNOLOGIE - 93R
31
2017/2018
open
(2019). Exploiting Nanotechnology to Improve Cancer Immunotherapy and Overcome Biological Barriers. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2019).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_712513.pdf

accesso aperto

Descrizione: tesi di dottorato
Dimensione 13.88 MB
Formato Adobe PDF
13.88 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/241065
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact