The aim of this work is to study the accumulation in HepG2 cells of two essential metals with toxic potency and to analyse the induction of the heat shock protein 70 kDa (hsp70) consequent to metal exposure. Cu and Zn were the metals considered and were analysed both as single compounds and in combination in order to evidence synergic effects of the mixture. The use of HepG2 cells provided an in vitro system that retains morphological and metabolic properties and the expression of specific genes typical of liver parenchymal cells. Moreover, the hepatic cells represent a suitable model for their susceptibility to metal toxicity since liver, gastrointestinal tract and renal tubular cells are involved in the uptake, transport, detoxification and secretion of these compounds. The uptake of Cu and Zn followed a time-dependent accumulation when they were used separate. The combination of the two metals produced a higher accumulation of Zn. The stress protein hsp70 was expressed before the metals accumulated within the cells, as shown by the measures obtained with the ICP-AES technique. Moreover, the accumulation of hsp70 by a sublethal shock provided a protective mechanism against metal cytotoxicity. (C) 2001 Elsevier Science Ltd. All rights reserved
Urani, C., Melchioretto, P., Morazzoni, F., Canevali, C., Camatini, M. (2001). Copper and zinc uptake and hsp70 expression in HepG2 cells. TOXICOLOGY IN VITRO, 15(4-5), 497-502 [10.1016/S0887-2333(01)00054-6].
Copper and zinc uptake and hsp70 expression in HepG2 cells
Urani, C;Melchioretto, P;Morazzoni, F;Canevali, C;Camatini, MC
2001
Abstract
The aim of this work is to study the accumulation in HepG2 cells of two essential metals with toxic potency and to analyse the induction of the heat shock protein 70 kDa (hsp70) consequent to metal exposure. Cu and Zn were the metals considered and were analysed both as single compounds and in combination in order to evidence synergic effects of the mixture. The use of HepG2 cells provided an in vitro system that retains morphological and metabolic properties and the expression of specific genes typical of liver parenchymal cells. Moreover, the hepatic cells represent a suitable model for their susceptibility to metal toxicity since liver, gastrointestinal tract and renal tubular cells are involved in the uptake, transport, detoxification and secretion of these compounds. The uptake of Cu and Zn followed a time-dependent accumulation when they were used separate. The combination of the two metals produced a higher accumulation of Zn. The stress protein hsp70 was expressed before the metals accumulated within the cells, as shown by the measures obtained with the ICP-AES technique. Moreover, the accumulation of hsp70 by a sublethal shock provided a protective mechanism against metal cytotoxicity. (C) 2001 Elsevier Science Ltd. All rights reservedI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.