In this work we provide an asymptotic expansion for the Szegö kernel associated to a suitably defined Hardy space on the non-smooth worm domain D′β. After describing the singularities of the kernel, we compare it with an asymptotic expansion of the Bergman kernel. In particular, we show that the Bergman kernel has the same singularities of the first derivative of the Szegö kernel with respect to any of the variables. On the side, we prove the boundedness of the Bergman projection operator on Sobolev spaces of integer order.

Monguzzi, A. (2016). A Comparison Between the Bergman and Szegö Kernels of the Non-smooth Worm Domain D′β. COMPLEX ANALYSIS AND OPERATOR THEORY, 10(5), 1017-1043 [10.1007/s11785-015-0518-z].

A Comparison Between the Bergman and Szegö Kernels of the Non-smooth Worm Domain D′β

Monguzzi, A
2016

Abstract

In this work we provide an asymptotic expansion for the Szegö kernel associated to a suitably defined Hardy space on the non-smooth worm domain D′β. After describing the singularities of the kernel, we compare it with an asymptotic expansion of the Bergman kernel. In particular, we show that the Bergman kernel has the same singularities of the first derivative of the Szegö kernel with respect to any of the variables. On the side, we prove the boundedness of the Bergman projection operator on Sobolev spaces of integer order.
Articolo in rivista - Articolo scientifico
Bergman kernel; Hardy spaces; Szegö kernel; Worm domains;
Hardy spaces; Worm domains; Szego kernel; Bergman kernel
English
26-dic-2015
2016
10
5
1017
1043
reserved
Monguzzi, A. (2016). A Comparison Between the Bergman and Szegö Kernels of the Non-smooth Worm Domain D′β. COMPLEX ANALYSIS AND OPERATOR THEORY, 10(5), 1017-1043 [10.1007/s11785-015-0518-z].
File in questo prodotto:
File Dimensione Formato  
2016 - A comparison.pdf

Solo gestori archivio

Tipologia di allegato: Submitted Version (Pre-print)
Dimensione 246.32 kB
Formato Adobe PDF
246.32 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/231546
Citazioni
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
Social impact