We identify a human mutation (E1053K) in the ankyrin-binding motif of Na(v)1.5 that is associated with Brugada syndrome, a fatal cardiac arrhythmia caused by altered function of Na(v)1.5. The E1053K mutation abolishes binding of Na(v)1.5 to ankyrin-G, and also prevents accumulation of Na(v)1.5 at cell surface sites in ventricular cardiomyocytes. Ankyrin-G and Na(v)1.5 are both localized at intercalated disc and T-tubule membranes in cardiomyocytes, and Na(v)1.5 coimmunoprecipitates with 190-kDa ankyrin-G from detergent-soluble lysates from rat heart. These data suggest that Na(v)1.5 associates with ankyrin-G and that ankyrin-G is required for Na(v)1.5 localization at excitable membranes in cardiomyocytes. Together with previous work in neurons, these results in cardiomyocytes suggest that ankyrin-G participates in a common pathway for localization of voltage-gated Na(v) channels at sites of function in multiple excitable cell types.
Mohler, P., Rivolta, I., Napolitano, C., Lemaillet, G., Lambert, S., Priori, S., et al. (2004). Nav1.5 E1053K mutation causing Brugada syndrome blocks binding to ankyrin-G and expression of Nav1.5 on the surface of cardiomyocytes. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 101(50), 17533-17538 [10.1073/pnas.0403711101].
Nav1.5 E1053K mutation causing Brugada syndrome blocks binding to ankyrin-G and expression of Nav1.5 on the surface of cardiomyocytes
RIVOLTA, ILARIA;
2004
Abstract
We identify a human mutation (E1053K) in the ankyrin-binding motif of Na(v)1.5 that is associated with Brugada syndrome, a fatal cardiac arrhythmia caused by altered function of Na(v)1.5. The E1053K mutation abolishes binding of Na(v)1.5 to ankyrin-G, and also prevents accumulation of Na(v)1.5 at cell surface sites in ventricular cardiomyocytes. Ankyrin-G and Na(v)1.5 are both localized at intercalated disc and T-tubule membranes in cardiomyocytes, and Na(v)1.5 coimmunoprecipitates with 190-kDa ankyrin-G from detergent-soluble lysates from rat heart. These data suggest that Na(v)1.5 associates with ankyrin-G and that ankyrin-G is required for Na(v)1.5 localization at excitable membranes in cardiomyocytes. Together with previous work in neurons, these results in cardiomyocytes suggest that ankyrin-G participates in a common pathway for localization of voltage-gated Na(v) channels at sites of function in multiple excitable cell types.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.