We present infrared colours (in the 25-500 μm spectral range) and UV to radio continuum spectral energy distributions of a sample of 51 nearby galaxies observed with SPIRE on Herschel. The observed sample includes all morphological classes, from quiescent ellipticals to active starbursts. Active galaxies have warmer colour temperatures than normal spirals. In ellipticals hosting a radio galaxy, the far-infrared (FIR) emission is dominated by the synchrotron nuclear emission. The colour temperature of the cold dust is higher in quiescent E-S0a than in star-forming systems probably because of the different nature of their dust heating sources (evolved stellar populations, X-ray, fast electrons) and dust grain properties. In contrast to the colour temperature of the warm dust, the f350/f500 index sensitive to the cold dust decreases with star formation and increases with metallicity, suggesting an overabundance of cold dust or an emissivity parameter β < 2 in low metallicity, active systems. © ESO 2010.
Boselli, A., Ciesla, L., Buat, V., Cortese, L., Auld, R., Baes, M., et al. (2010). FIR colours and SEDs of nearby galaxies observed withHerschel. ASTRONOMY & ASTROPHYSICS, 518(4) [10.1051/0004-6361/201014534].
FIR colours and SEDs of nearby galaxies observed withHerschel
GAVAZZI, GIUSEPPE;
2010
Abstract
We present infrared colours (in the 25-500 μm spectral range) and UV to radio continuum spectral energy distributions of a sample of 51 nearby galaxies observed with SPIRE on Herschel. The observed sample includes all morphological classes, from quiescent ellipticals to active starbursts. Active galaxies have warmer colour temperatures than normal spirals. In ellipticals hosting a radio galaxy, the far-infrared (FIR) emission is dominated by the synchrotron nuclear emission. The colour temperature of the cold dust is higher in quiescent E-S0a than in star-forming systems probably because of the different nature of their dust heating sources (evolved stellar populations, X-ray, fast electrons) and dust grain properties. In contrast to the colour temperature of the warm dust, the f350/f500 index sensitive to the cold dust decreases with star formation and increases with metallicity, suggesting an overabundance of cold dust or an emissivity parameter β < 2 in low metallicity, active systems. © ESO 2010.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.