In the current information-centric era, recommender systems are gaining momentum as tools able to assist users in daily decision-making tasks. They may exploit users’ past behavior combined with side/contextual information to suggest them new items or pieces of knowledge they might be interested in. Within the recommendation process, Linked Data have been already proposed as a valuable source of information to enhance the predictive power of recommender systems not only in terms of accuracy but also of diversity and novelty of results. In this direction, one of the main open issues in using Linked Data to feed a recommendation engine is related to feature selection: how to select only the most relevant subset of the original Linked Data thus avoiding both useless processing of data and the so called “curse of dimensionality” problem. In this paper, we show how ontology-based (linked) data summarization can drive the selection of properties/features useful to a recommender system. In particular, we compare a fully automated feature selection method based on ontology-based data summaries with more classical ones, and we evaluate the performance of these methods in terms of accuracy and aggregate diversity of a recommender system exploiting the top-k selected features. We set up an experimental testbed relying on datasets related to different knowledge domains. Results show the feasibility of a feature selection process driven by ontology-based data summaries for Linked Data-enabled recommender systems.
Di Noia, T., Magarelli, C., Maurino, A., Palmonari, M., Rula, A. (2018). Using Ontology-Based Data Summarization to Develop Semantics-Aware Recommender Systems. In The Semantic Web (pp.128-144) [10.1007/978-3-319-93417-4_9].
Using Ontology-Based Data Summarization to Develop Semantics-Aware Recommender Systems
Magarelli, C;Maurino, A;Palmonari, M;Rula, A
2018
Abstract
In the current information-centric era, recommender systems are gaining momentum as tools able to assist users in daily decision-making tasks. They may exploit users’ past behavior combined with side/contextual information to suggest them new items or pieces of knowledge they might be interested in. Within the recommendation process, Linked Data have been already proposed as a valuable source of information to enhance the predictive power of recommender systems not only in terms of accuracy but also of diversity and novelty of results. In this direction, one of the main open issues in using Linked Data to feed a recommendation engine is related to feature selection: how to select only the most relevant subset of the original Linked Data thus avoiding both useless processing of data and the so called “curse of dimensionality” problem. In this paper, we show how ontology-based (linked) data summarization can drive the selection of properties/features useful to a recommender system. In particular, we compare a fully automated feature selection method based on ontology-based data summaries with more classical ones, and we evaluate the performance of these methods in terms of accuracy and aggregate diversity of a recommender system exploiting the top-k selected features. We set up an experimental testbed relying on datasets related to different knowledge domains. Results show the feasibility of a feature selection process driven by ontology-based data summaries for Linked Data-enabled recommender systems.File | Dimensione | Formato | |
---|---|---|---|
Di Noia-2018-ESWC-AAM.pdf
accesso aperto
Tipologia di allegato:
Author’s Accepted Manuscript, AAM (Post-print)
Licenza:
Altro
Dimensione
326.5 kB
Formato
Adobe PDF
|
326.5 kB | Adobe PDF | Visualizza/Apri |
Di Noia-2018-ESWC-VoR.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
570.27 kB
Formato
Adobe PDF
|
570.27 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.