Primary biliary cholangitis (PBC) is a rare female preponderant chronic autoimmune cholestatic liver disease, characterized by intrahepatic ductopenia and progressive fibrosis. During last decades incidence and prevalence showed an increasing rate which vary widely worldwide demonstrating an important interaction between environmental and genetic factors. Heritability suggested by familial occurrence and monozygotic twins concordance have been confirmed in more studies. Epigenetics mechanisms such as histone modification and DNA methylation can partially explain predisposition and inheritance of this disease. Nevertheless, an association with specific class II human leukocyte antigen (HLA) variants have been reported, showing an increase risk in susceptibility. More recently, data regarding a strong protective association between PBC and HLA alleles confirmed this association. After recent genome-wide association studies (GWAS), a more intricate interaction between PBC and the HLA region has been shown. Furthermore, GWAS also identified several immune-related-genes implicated. More genome-wide association studies on this disease are needed to reach a complete and systematic knowledge of this disease. In this review we discuss more recent issued data on geoepidemiology of PBC and the role of (epi-)genetic mechanisms in its pathogenesis.
Rosa, R., Cristoferi, L., Tanaka, A., Invernizzi, P. (2018). Geoepidemiology and (epi-)genetics in primary biliary cholangitis. BAILLIERE'S BEST PRACTICE & RESEARCH. CLINICAL GASTROENTEROLOGY, 34-35, 11-15 [10.1016/j.bpg.2018.05.011].
Geoepidemiology and (epi-)genetics in primary biliary cholangitis
Cristoferi, L;Invernizzi, P
2018
Abstract
Primary biliary cholangitis (PBC) is a rare female preponderant chronic autoimmune cholestatic liver disease, characterized by intrahepatic ductopenia and progressive fibrosis. During last decades incidence and prevalence showed an increasing rate which vary widely worldwide demonstrating an important interaction between environmental and genetic factors. Heritability suggested by familial occurrence and monozygotic twins concordance have been confirmed in more studies. Epigenetics mechanisms such as histone modification and DNA methylation can partially explain predisposition and inheritance of this disease. Nevertheless, an association with specific class II human leukocyte antigen (HLA) variants have been reported, showing an increase risk in susceptibility. More recently, data regarding a strong protective association between PBC and HLA alleles confirmed this association. After recent genome-wide association studies (GWAS), a more intricate interaction between PBC and the HLA region has been shown. Furthermore, GWAS also identified several immune-related-genes implicated. More genome-wide association studies on this disease are needed to reach a complete and systematic knowledge of this disease. In this review we discuss more recent issued data on geoepidemiology of PBC and the role of (epi-)genetic mechanisms in its pathogenesis.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.