We prove that Claas Röver's Thompson{Grigorchuk simple group V has type F1. The proof involves constructing two complexes on which V G acts a simplicial complex analogous to the Stein complex for V , and a polysimplicia complex analogous to the Farley complex for V . We then analyze the descendin links of the polysimplicial complex, using a theorem of Belk and Forrest to prov increasing connectivity.

Belk, J., Matucci, F. (2016). Röver's simple group is of type f∞. PUBLICACIONS MATEMÀTIQUES, 60(2), 501-524 [10.5565/PUBLMAT_60216_07].

Röver's simple group is of type f∞

Matucci, F
2016

Abstract

We prove that Claas Röver's Thompson{Grigorchuk simple group V has type F1. The proof involves constructing two complexes on which V G acts a simplicial complex analogous to the Stein complex for V , and a polysimplicia complex analogous to the Farley complex for V . We then analyze the descendin links of the polysimplicial complex, using a theorem of Belk and Forrest to prov increasing connectivity.
Articolo in rivista - Articolo scientifico
Finiteness properties; Grigorchuk's group; Polysimplicial Complex; Thompson's groups;
Finiteness properties; Grigorchuk's group; Polysimplicial Complex; Thompson's groups
English
2016
60
2
501
524
partially_open
Belk, J., Matucci, F. (2016). Röver's simple group is of type f∞. PUBLICACIONS MATEMÀTIQUES, 60(2), 501-524 [10.5565/PUBLMAT_60216_07].
File in questo prodotto:
File Dimensione Formato  
RoverComplex2016.pdf

accesso aperto

Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Dimensione 382.64 kB
Formato Adobe PDF
382.64 kB Adobe PDF Visualizza/Apri
60216_07.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 406.6 kB
Formato Adobe PDF
406.6 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/218025
Citazioni
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 8
Social impact