Matrix metalloproteinases (MMPs) have been shown to be involved in tumor-induced angiogenesis. In particular, MMP-2, MMP-9, and MMP-14 have been reported to be crucial for tumor angiogenesis and the formation of metastasis, thus becoming attractive targets in cancer therapy. Here, we report our optimization effort to identify novel N-isopropoxy-arylsulfonamide hydroxamates with improved inhibitory activity toward MMP-2, MMP-9, and MMP-14 with respect to the previously discovered compound 1. A new series of hydroxamates was designed, synthesized, and tested for their antiangiogenic activity using in vitro assays with human umbilical vein endothelial cells (HUVECs). A nanomolar MMP-2, MMP-9, and MMP-14 inhibitor was identified, compound 3, able to potently inhibit angiogenesis in vitro and also in vivo in the matrigel sponge assay in mice. Finally, X-ray crystallographic and docking studies were conducted for compound 3 in order to investigate its binding mode to MMP-9 and MMP-14.
Nuti, E., Cantelmo, A., Gallo, C., Bruno, A., Bassani, B., Camodeca, C., et al. (2015). N-O-Isopropyl Sulfonamido-Based Hydroxamates as Matrix Metalloproteinase Inhibitors: Hit Selection and in Vivo Antiangiogenic Activity. JOURNAL OF MEDICINAL CHEMISTRY, 58(18), 7224-7240 [10.1021/acs.jmedchem.5b00367].
N-O-Isopropyl Sulfonamido-Based Hydroxamates as Matrix Metalloproteinase Inhibitors: Hit Selection and in Vivo Antiangiogenic Activity
Albini A;
2015
Abstract
Matrix metalloproteinases (MMPs) have been shown to be involved in tumor-induced angiogenesis. In particular, MMP-2, MMP-9, and MMP-14 have been reported to be crucial for tumor angiogenesis and the formation of metastasis, thus becoming attractive targets in cancer therapy. Here, we report our optimization effort to identify novel N-isopropoxy-arylsulfonamide hydroxamates with improved inhibitory activity toward MMP-2, MMP-9, and MMP-14 with respect to the previously discovered compound 1. A new series of hydroxamates was designed, synthesized, and tested for their antiangiogenic activity using in vitro assays with human umbilical vein endothelial cells (HUVECs). A nanomolar MMP-2, MMP-9, and MMP-14 inhibitor was identified, compound 3, able to potently inhibit angiogenesis in vitro and also in vivo in the matrigel sponge assay in mice. Finally, X-ray crystallographic and docking studies were conducted for compound 3 in order to investigate its binding mode to MMP-9 and MMP-14.File | Dimensione | Formato | |
---|---|---|---|
Nuti-2015-J Med Chem-VoR.pdf
Solo gestori archivio
Descrizione: Article
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
7.31 MB
Formato
Adobe PDF
|
7.31 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Nuti-2015-J Med Chem-AAM.pdf
accesso aperto
Descrizione: Article
Tipologia di allegato:
Author’s Accepted Manuscript, AAM (Post-print)
Licenza:
Altro
Dimensione
4.7 MB
Formato
Adobe PDF
|
4.7 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.