We consider complete manifolds with asymptotically non-negative curvature which enjoy a Euclidean-type Sobolev inequality and we get an explicit lower control on the volume of geodesic balls. In case the amount of negative curvature is small and the Sobolev constant is almost optimal, we deduce that the manifold is diffeomorphic to Euclidean space. This extends previous results by M. Ledoux and C. Xia. © 2010 American Mathematical Society

Pigola, S., Veronelli, G. (2010). Lower volume estimates and sobolev inequalities. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 138(12), 4479-4486 [10.1090/S0002-9939-2010-10514-2].

Lower volume estimates and sobolev inequalities

Pigola, S;Veronelli, G
2010

Abstract

We consider complete manifolds with asymptotically non-negative curvature which enjoy a Euclidean-type Sobolev inequality and we get an explicit lower control on the volume of geodesic balls. In case the amount of negative curvature is small and the Sobolev constant is almost optimal, we deduce that the manifold is diffeomorphic to Euclidean space. This extends previous results by M. Ledoux and C. Xia. © 2010 American Mathematical Society
Articolo in rivista - Articolo scientifico
sharp Sobolev inequality ; rigidity theorems ; non-negative Ricci curvature
English
2010
138
12
4479
4486
none
Pigola, S., Veronelli, G. (2010). Lower volume estimates and sobolev inequalities. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 138(12), 4479-4486 [10.1090/S0002-9939-2010-10514-2].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/216764
Citazioni
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
Social impact