We prove that a map f : M -> N with finite p-energy, p > 2, from a complete manifold (M, <,>) into a non-positively curved, compact manifold N is homotopic to a constant, provided the negative part of the Ricci curvature of the domain manifold is small in a suitable spectral sense. The result relies on a Liouville-type theorem for finite q-energy, p-harmonic maps under spectral assumptions.

Pigola, S., Veronelli, G. (2009). On the homotopy class of maps with finite p-energy into non-positively curved manifolds. GEOMETRIAE DEDICATA, 143(1), 109-116 [10.1007/s10711-009-9376-z].

On the homotopy class of maps with finite p-energy into non-positively curved manifolds

Pigola, Stefano;VERONELLI, GIONA
2009

Abstract

We prove that a map f : M -> N with finite p-energy, p > 2, from a complete manifold (M, <,>) into a non-positively curved, compact manifold N is homotopic to a constant, provided the negative part of the Ricci curvature of the domain manifold is small in a suitable spectral sense. The result relies on a Liouville-type theorem for finite q-energy, p-harmonic maps under spectral assumptions.
Articolo in rivista - Articolo scientifico
p-harmonic maps; Liouville type theorem; Homotopy class
English
2009
143
1
109
116
none
Pigola, S., Veronelli, G. (2009). On the homotopy class of maps with finite p-energy into non-positively curved manifolds. GEOMETRIAE DEDICATA, 143(1), 109-116 [10.1007/s10711-009-9376-z].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/215471
Citazioni
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 12
Social impact