In a large number of experimental problems, high dimensionality of the search area and economical constraints can severely limit the number of experimental points that can be tested. Within these constraints, classical optimization techniques perform poorly, in particular, when little a priori knowledge is available. In this work we investigate the possibility of combining approaches from statistical modeling and bio-inspired algorithms to effectively explore a huge search space, sampling only a limited number of experimental points. To this purpose, we introduce a novel approach, combining ant colony optimization (ACO) and naïve Bayes classifier (NBC) that is, the naïve Bayes ant colony optimization (NACO) procedure. We compare NACO with other similar approaches developing a simulation study. We then derive the NACO procedure with the goal to design artificial enzymes with no sequence homology to the extant one. Our final aim is to mimic the natural fold of 200 amino acids 1AGY serine esterase from Fusarium solani.
Borrotti, M., Minervini, G., De Lucrezia, D., Poli, I. (2016). Naïve Bayes ant colony optimization for designing high dimensional experiments. APPLIED SOFT COMPUTING, 49, 259-268 [10.1016/j.asoc.2016.08.018].
Naïve Bayes ant colony optimization for designing high dimensional experiments
Borrotti, M
;
2016
Abstract
In a large number of experimental problems, high dimensionality of the search area and economical constraints can severely limit the number of experimental points that can be tested. Within these constraints, classical optimization techniques perform poorly, in particular, when little a priori knowledge is available. In this work we investigate the possibility of combining approaches from statistical modeling and bio-inspired algorithms to effectively explore a huge search space, sampling only a limited number of experimental points. To this purpose, we introduce a novel approach, combining ant colony optimization (ACO) and naïve Bayes classifier (NBC) that is, the naïve Bayes ant colony optimization (NACO) procedure. We compare NACO with other similar approaches developing a simulation study. We then derive the NACO procedure with the goal to design artificial enzymes with no sequence homology to the extant one. Our final aim is to mimic the natural fold of 200 amino acids 1AGY serine esterase from Fusarium solani.File | Dimensione | Formato | |
---|---|---|---|
04_Pubb.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Dimensione
1.73 MB
Formato
Adobe PDF
|
1.73 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.