In a large number of experimental problems, high dimensionality of the search area and economical constraints can severely limit the number of experimental points that can be tested. Within these constraints, classical optimization techniques perform poorly, in particular, when little a priori knowledge is available. In this work we investigate the possibility of combining approaches from statistical modeling and bio-inspired algorithms to effectively explore a huge search space, sampling only a limited number of experimental points. To this purpose, we introduce a novel approach, combining ant colony optimization (ACO) and naïve Bayes classifier (NBC) that is, the naïve Bayes ant colony optimization (NACO) procedure. We compare NACO with other similar approaches developing a simulation study. We then derive the NACO procedure with the goal to design artificial enzymes with no sequence homology to the extant one. Our final aim is to mimic the natural fold of 200 amino acids 1AGY serine esterase from Fusarium solani.

Borrotti, M., Minervini, G., De Lucrezia, D., Poli, I. (2016). Naïve Bayes ant colony optimization for designing high dimensional experiments. APPLIED SOFT COMPUTING, 49, 259-268 [10.1016/j.asoc.2016.08.018].

Naïve Bayes ant colony optimization for designing high dimensional experiments

Borrotti, M
;
2016

Abstract

In a large number of experimental problems, high dimensionality of the search area and economical constraints can severely limit the number of experimental points that can be tested. Within these constraints, classical optimization techniques perform poorly, in particular, when little a priori knowledge is available. In this work we investigate the possibility of combining approaches from statistical modeling and bio-inspired algorithms to effectively explore a huge search space, sampling only a limited number of experimental points. To this purpose, we introduce a novel approach, combining ant colony optimization (ACO) and naïve Bayes classifier (NBC) that is, the naïve Bayes ant colony optimization (NACO) procedure. We compare NACO with other similar approaches developing a simulation study. We then derive the NACO procedure with the goal to design artificial enzymes with no sequence homology to the extant one. Our final aim is to mimic the natural fold of 200 amino acids 1AGY serine esterase from Fusarium solani.
Articolo in rivista - Articolo scientifico
Ant colony optimization; Enzyme engineering; Experimental design; High dimensionality; Naïve Bayes classifier;
Ant colony optimization; Enzyme engineering; Experimental design; High dimensionality; Naïve Bayes classifier
English
2016
49
259
268
reserved
Borrotti, M., Minervini, G., De Lucrezia, D., Poli, I. (2016). Naïve Bayes ant colony optimization for designing high dimensional experiments. APPLIED SOFT COMPUTING, 49, 259-268 [10.1016/j.asoc.2016.08.018].
File in questo prodotto:
File Dimensione Formato  
04_Pubb.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 1.73 MB
Formato Adobe PDF
1.73 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/214511
Citazioni
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 5
Social impact