We propose a novel modular CNN architecture that provides semantic segmentation and understanding of outdoor street environment images. Our solution processes a 512x1024 resolution image on a single Titan Xp GPU at 37.4 FPS attaining 70.4% IoU on the Cityscapes test dataset.

Mazzini, D., Buzzelli, M., Pau, D., Schettini, R. (2018). A CNN architecture for efficient semantic segmentation of street scenes. In Proceedings 2018 IEEE 8th International Conference on Consumer Electronics-Berlin (ICCE-Berlin) (pp.1-6). IEEE Computer Society [10.1109/ICCE-Berlin.2018.8576193].

A CNN architecture for efficient semantic segmentation of street scenes

Mazzini, Davide
;
Buzzelli, Marco;Schettini, Raimondo
2018

Abstract

We propose a novel modular CNN architecture that provides semantic segmentation and understanding of outdoor street environment images. Our solution processes a 512x1024 resolution image on a single Titan Xp GPU at 37.4 FPS attaining 70.4% IoU on the Cityscapes test dataset.
slide + paper
deep convolutional neural network; efficient street scene parsing; multiresolution processing; semantic segmentation;
semantic segmentation, efficient street scene parsing, deep convolutional neural network, multiresolution processing
English
8th IEEE International Conference on Consumer Electronics - Berlin, ICCE-Berlin 2018
2018
Moeller, R; Ciabattoni, L
Proceedings 2018 IEEE 8th International Conference on Consumer Electronics-Berlin (ICCE-Berlin)
9781538660959
17-dic-2018
2018
2018-
1
6
8576193
https://ieeexplore.ieee.org/document/8576193
reserved
Mazzini, D., Buzzelli, M., Pau, D., Schettini, R. (2018). A CNN architecture for efficient semantic segmentation of street scenes. In Proceedings 2018 IEEE 8th International Conference on Consumer Electronics-Berlin (ICCE-Berlin) (pp.1-6). IEEE Computer Society [10.1109/ICCE-Berlin.2018.8576193].
File in questo prodotto:
File Dimensione Formato  
2018e_CAMERA_A_CNN_Architecture_for_Efficient_Semantic_Segmentation_of_Street_Scenes.pdf

Solo gestori archivio

Descrizione: Articolo principale
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 995.32 kB
Formato Adobe PDF
995.32 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/213974
Citazioni
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 3
Social impact