A family of virtual element methods for the two-dimensional Navier-Stokes equations is proposed and analyzed. The schemes provide a discrete velocity field which is pointwise divergence-free. A rigorous error analysis is developed, showing that the methods are stable and optimally convergent. Several numerical tests are presented, confirming the theoretical predictions. A comparison with some mixed finite elements is also performed.

Beirao da Veiga, L., Lovadina, C., Vacca, G. (2018). Virtual elements for the navier-stokes problem on polygonal meshes. SIAM JOURNAL ON NUMERICAL ANALYSIS, 56(3), 1210-1242 [10.1137/17M1132811].

Virtual elements for the navier-stokes problem on polygonal meshes

Beirao da Veiga, L;VACCA, GIUSEPPE
2018

Abstract

A family of virtual element methods for the two-dimensional Navier-Stokes equations is proposed and analyzed. The schemes provide a discrete velocity field which is pointwise divergence-free. A rigorous error analysis is developed, showing that the methods are stable and optimally convergent. Several numerical tests are presented, confirming the theoretical predictions. A comparison with some mixed finite elements is also performed.
Articolo in rivista - Articolo scientifico
Navier-Stokes equations; Polygonal meshes; Virtual element method; Numerical Analysis; Computational Mathematics; Applied Mathematics
English
2018
56
3
1210
1242
partially_open
Beirao da Veiga, L., Lovadina, C., Vacca, G. (2018). Virtual elements for the navier-stokes problem on polygonal meshes. SIAM JOURNAL ON NUMERICAL ANALYSIS, 56(3), 1210-1242 [10.1137/17M1132811].
File in questo prodotto:
File Dimensione Formato  
10.113717M1132811.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 1.32 MB
Formato Adobe PDF
1.32 MB Adobe PDF Visualizza/Apri
2018-Beirao_Lovadina_Vacca-SINUM.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 1.42 MB
Formato Adobe PDF
1.42 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/212789
Citazioni
  • Scopus 180
  • ???jsp.display-item.citation.isi??? 169
Social impact