Let {Sn} be a random walk in the domain of attraction of a stable law y, i.e. there exists a sequence of positive real numbers (a n) such that Sn/an converges in law to y. Our main result is that the rescaled process (S[nt] /an,t ≥ 0),when conditioned to stay positive, converges in law (in the functional sense) towards the corresponding stable Lévy process conditioned to stay positive. Under some additional assumptions, we also prove a related invariance principle for the random walk killed at its first entrance in the negative half-line and conditioned to die at zero. © Association des Publications de l'Institut Henri Poincaré, 2008.

Caravenna, F., Chaumont, L. (2008). Invariance principles for random walks conditioned to stay positive. ANNALES DE L'INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 44(1), 170-190 [10.1214/07-AIHP119].

Invariance principles for random walks conditioned to stay positive

CARAVENNA, FRANCESCO;
2008

Abstract

Let {Sn} be a random walk in the domain of attraction of a stable law y, i.e. there exists a sequence of positive real numbers (a n) such that Sn/an converges in law to y. Our main result is that the rescaled process (S[nt] /an,t ≥ 0),when conditioned to stay positive, converges in law (in the functional sense) towards the corresponding stable Lévy process conditioned to stay positive. Under some additional assumptions, we also prove a related invariance principle for the random walk killed at its first entrance in the negative half-line and conditioned to die at zero. © Association des Publications de l'Institut Henri Poincaré, 2008.
Articolo in rivista - Articolo scientifico
Random walk; Stable law; Lévy process; Conditioning to stay positive; Invariance principle
English
2008
44
1
170
190
none
Caravenna, F., Chaumont, L. (2008). Invariance principles for random walks conditioned to stay positive. ANNALES DE L'INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 44(1), 170-190 [10.1214/07-AIHP119].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/21116
Citazioni
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 41
Social impact