Lipophilicity prediction is routinely applied to small molecules and presents a working alternative to experimental log P or log D determination. For compounds outside the domain of classical medicinal chemistry these predictions lack accuracy, advocating the development of bespoke in silico approaches. Peptides and their derivatives and mimetics fill the structural gap between small synthetic drugs and genetically engineered macromolecules. Here, we present a data-driven machine learning method for peptide log D7.4 prediction. A model for estimating the lipophilicity of short linear peptides consisting of natural amino acids was developed. In a prospective test, we obtained accurate predictions for a set of newly synthesized linear tri- to hexapeptides. Further model development focused on more complex peptide mimetics from the AstraZeneca compound collection. The results obtained demonstrate the applicability of the new prediction model to peptides and peptide derivatives in a log D7.4 range of approximately −3 to 5, with superior accuracy to established lipophilicity models for small molecules
Fuchs, J., Grisoni, F., Kossenjans, M., Hiss, J., Schneider, G. (2018). Lipophilicity prediction of peptides and peptide derivatives by consensus machine learning. MEDCHEMCOMM, 9(9), 1538-1546 [10.1039/C8MD00370J].
Lipophilicity prediction of peptides and peptide derivatives by consensus machine learning
Grisoni, F;
2018
Abstract
Lipophilicity prediction is routinely applied to small molecules and presents a working alternative to experimental log P or log D determination. For compounds outside the domain of classical medicinal chemistry these predictions lack accuracy, advocating the development of bespoke in silico approaches. Peptides and their derivatives and mimetics fill the structural gap between small synthetic drugs and genetically engineered macromolecules. Here, we present a data-driven machine learning method for peptide log D7.4 prediction. A model for estimating the lipophilicity of short linear peptides consisting of natural amino acids was developed. In a prospective test, we obtained accurate predictions for a set of newly synthesized linear tri- to hexapeptides. Further model development focused on more complex peptide mimetics from the AstraZeneca compound collection. The results obtained demonstrate the applicability of the new prediction model to peptides and peptide derivatives in a log D7.4 range of approximately −3 to 5, with superior accuracy to established lipophilicity models for small moleculesFile | Dimensione | Formato | |
---|---|---|---|
Fuchs_2018_c8md00370j.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Dimensione
1.82 MB
Formato
Adobe PDF
|
1.82 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.