Finding cohesive subgraphs in a network is a well-known problem in graph theory. Several alternative formulations of cohesive subgraph have been proposed, a notable example being s-club, which is a subgraph where each vertex is at distance at most s to the others. Here we consider the problem of covering a given graph with the minimum number of s-clubs. We study the computational and approximation complexity of this problem, when s is equal to 2 or 3. First, we show that deciding if there exists a cover of a graph with three 2-clubs is NP-complete, and that deciding if there exists a cover of a graph with two 3-clubs is NP-complete. Then, we consider the approximation complexity of covering a graph with the minimum number of 2-clubs and 3-clubs. We show that, given a graph G = (V,E) to be covered, covering G with the minimum number of 2-clubs is not approximable within factor (Formula Presented), for any ε>0, and covering G with the minimum number of 3-clubs is not approximable within factor O(|V|1-ε, for any ε>0. On the positive side, we give an approximation algorithm of factor 2|V|1/2log3/2|V| for covering a graph with the minimum number of 2-clubs.
Dondi, R., Mauri, G., Sikora, F., Zoppis, I. (2018). Covering with clubs: Complexity and approximability. In IWOCA: International Workshop on Combinatorial Algorithms - Combinatorial Algorithms (pp.153-164). Springer Verlag [10.1007/978-3-319-94667-2_13].
Covering with clubs: Complexity and approximability
Mauri, Giancarlo;Zoppis, Italo
2018
Abstract
Finding cohesive subgraphs in a network is a well-known problem in graph theory. Several alternative formulations of cohesive subgraph have been proposed, a notable example being s-club, which is a subgraph where each vertex is at distance at most s to the others. Here we consider the problem of covering a given graph with the minimum number of s-clubs. We study the computational and approximation complexity of this problem, when s is equal to 2 or 3. First, we show that deciding if there exists a cover of a graph with three 2-clubs is NP-complete, and that deciding if there exists a cover of a graph with two 3-clubs is NP-complete. Then, we consider the approximation complexity of covering a graph with the minimum number of 2-clubs and 3-clubs. We show that, given a graph G = (V,E) to be covered, covering G with the minimum number of 2-clubs is not approximable within factor (Formula Presented), for any ε>0, and covering G with the minimum number of 3-clubs is not approximable within factor O(|V|1-ε, for any ε>0. On the positive side, we give an approximation algorithm of factor 2|V|1/2log3/2|V| for covering a graph with the minimum number of 2-clubs.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.