We study the geometrical meaning of the Faa di Bruno polynomials in the context of KP theory. They provide a basis in a subspace W of the universal Grassmannian associated to the KP hierarchy. When W comes from geometrical data via the Krichever map, the Faa di Bruno recursion relation turns out to be the cocycle condition for (the Welters hypercohomology group describing) the deformations of the dynamical line bundle on the spectral curve together with the meromorphic sections which give rise to the Krichever map. Starting from this, one sees that the whole KP hierarchy has a similar cohomological meaning

Falqui, G., Reina, C., Zampa, A. (1997). Krichever maps, Faà di Bruno polynomials, and cohomology in KP theory. LETTERS IN MATHEMATICAL PHYSICS, 42(4), 349-361 [10.1023/A:1007323118991].

Krichever maps, Faà di Bruno polynomials, and cohomology in KP theory

Falqui, G;
1997

Abstract

We study the geometrical meaning of the Faa di Bruno polynomials in the context of KP theory. They provide a basis in a subspace W of the universal Grassmannian associated to the KP hierarchy. When W comes from geometrical data via the Krichever map, the Faa di Bruno recursion relation turns out to be the cocycle condition for (the Welters hypercohomology group describing) the deformations of the dynamical line bundle on the spectral curve together with the meromorphic sections which give rise to the Krichever map. Starting from this, one sees that the whole KP hierarchy has a similar cohomological meaning
Articolo in rivista - Articolo scientifico
Krichever maps, Faà di Bruno polynomials, KP theory
English
1997
42
4
349
361
none
Falqui, G., Reina, C., Zampa, A. (1997). Krichever maps, Faà di Bruno polynomials, and cohomology in KP theory. LETTERS IN MATHEMATICAL PHYSICS, 42(4), 349-361 [10.1023/A:1007323118991].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/20299
Citazioni
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
Social impact