The mediator of dioxin toxicity, aryl hydrocarbon receptor (AHR), has also important physiological functions. Selective AHR modulators (SAHRMs) share some effects of dioxins, except for their marked toxicity. We recently characterised toxicologically two novel SAHRMs, prodrugs IMA-08401 and IMA-07101 in rats, demonstrating that they are far less deleterious than the most toxic AHR-agonist, TCDD. Here, we analysed the in vitro toxicity and in silico AHR binding of the respective active, deacetylated metabolites, IMA-06201 (N-ethyl-N-phenyl-5-chloro-1,2-dihydro-4-hydroxy-1-methyl-2-oxo-quinoline-3-carboxamide) and IMA-06504 (N-(4-trifluoromethylphenyl)-1,2-dihydro-4-hydroxy-5-methoxy-1-methyl-2-oxo-quinoline-3-carboxamide). In H4IIE rat hepatoma cells, IMA-06201 and IMA-06504 induced CYP1A1 with comparable potencies and efficacies to those of TCDD. They had little effect on cell viability as assessed by LDH leakage and MTT reduction assays, and were not mutagenic in the Ames test, but IMA-06504 elicited a maximally 2.7-fold increase in micronuclei. Molecular docking simulations showed that similar to TCDD, they occupy the central region of AHR ligand binding cavity. Hence, while showing low to negligible in vitro toxicity, these novel SAHRMs bind to the AHR qualitatively in a similar fashion to TCDD, and appear comparably powerful AHR agonists. Combined with our earlier results demonstrating that they seem considerably less toxic in vivo than TCDD, these compounds are thus highly interesting new SAHRMs

Mahiout, S., Giani Tagliabue, S., Nasri, A., Omoruyi, I., Pettersson, L., Bonati, L., et al. (2018). In vitro toxicity and in silico docking analysis of two novel selective AH-receptor modulators. TOXICOLOGY IN VITRO, 52, 178-188 [10.1016/j.tiv.2018.06.010].

In vitro toxicity and in silico docking analysis of two novel selective AH-receptor modulators

Giani Tagliabue, S;Bonati, L;
2018

Abstract

The mediator of dioxin toxicity, aryl hydrocarbon receptor (AHR), has also important physiological functions. Selective AHR modulators (SAHRMs) share some effects of dioxins, except for their marked toxicity. We recently characterised toxicologically two novel SAHRMs, prodrugs IMA-08401 and IMA-07101 in rats, demonstrating that they are far less deleterious than the most toxic AHR-agonist, TCDD. Here, we analysed the in vitro toxicity and in silico AHR binding of the respective active, deacetylated metabolites, IMA-06201 (N-ethyl-N-phenyl-5-chloro-1,2-dihydro-4-hydroxy-1-methyl-2-oxo-quinoline-3-carboxamide) and IMA-06504 (N-(4-trifluoromethylphenyl)-1,2-dihydro-4-hydroxy-5-methoxy-1-methyl-2-oxo-quinoline-3-carboxamide). In H4IIE rat hepatoma cells, IMA-06201 and IMA-06504 induced CYP1A1 with comparable potencies and efficacies to those of TCDD. They had little effect on cell viability as assessed by LDH leakage and MTT reduction assays, and were not mutagenic in the Ames test, but IMA-06504 elicited a maximally 2.7-fold increase in micronuclei. Molecular docking simulations showed that similar to TCDD, they occupy the central region of AHR ligand binding cavity. Hence, while showing low to negligible in vitro toxicity, these novel SAHRMs bind to the AHR qualitatively in a similar fashion to TCDD, and appear comparably powerful AHR agonists. Combined with our earlier results demonstrating that they seem considerably less toxic in vivo than TCDD, these compounds are thus highly interesting new SAHRMs
Articolo in rivista - Articolo scientifico
AH-receptor; Binding modelling; IMA-06201; IMA-06504; Selective modulators; TCDD; Toxicology
English
2018
52
178
188
none
Mahiout, S., Giani Tagliabue, S., Nasri, A., Omoruyi, I., Pettersson, L., Bonati, L., et al. (2018). In vitro toxicity and in silico docking analysis of two novel selective AH-receptor modulators. TOXICOLOGY IN VITRO, 52, 178-188 [10.1016/j.tiv.2018.06.010].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/202178
Citazioni
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
Social impact