Nanoparticles of very small size (below 10 nm) of TiO2 material are nowadays the functional building blocks for many applications in photocatalysis and photovoltaics. In order to improve the performances of this nanomaterial, it is of great importance to understand how the size, the shape and the interaction with water influence the structural, electronic and (photo)chemical properties of the TiO2 nanoparticles. In this thesis, we present a first-principles investigation of anatase TiO2 nanoparticles with different morphologies and a realistic size in vacuum and in aqueous environment. Throughout this work, we employed density functional theory (DFT) and, for the largest systems, self-consistent charge density functional tight-binding (SCC-DFTB) methodologies. In the first part of the thesis, we compare faceted and spherical stoichiometric TiO2 nanoparticles of various sizes (from 1.5 nm to 4.4 nm in diameter) in order to highlight analogies and differences. In the case of spherical nanoparticles, their complex structural features have been modeled with a two-scale approach, i.e. a global optimization at the SCC-DFTB level and a further relaxation at the hybrid DFT level of theory. From the structural point of view, we focus the attention on the surface-to-bulk ratio, on the surface sites coordination distribution, on the distortions due to the nanosize and on the surface energies. Regarding the electronic properties, we analyze the difference between Kohn-Sham and fundamental gaps of these finite-sized systems, the frontiers orbitals, ionization potentials and electron affinities and, finally, the densities of states projected on the various coordination sites. Subsequently, we investigate the effect of the size, shape and water adsorption on the life path of energy (excitons) and charge (electrons and holes) carriers in the realistic anatase TiO2 nanoparticle models by means of a wide set of hybrid DFT calculations. We describe and discuss the exciton/charge carriers formation, separation, recombination, self-trapping processes, which are analyzed in terms of structural distortions, energy gain or cost, charge localization/delocalization and electronic transitions of the trapped charges. We corroborate the computational results by an extensive comparison with the available experimental data from photoluminescence measurements, electron paramagnetic resonance (EPR) and transient absorption (TA) spectroscopies. We analyze also the effect of additional water on the photoexcited charge carriers dynamics of TiO2 nanoparticles with different morphologies by a combined experimental and theoretical study. Comparing the results from steady-state and transient infrared spectroscopy with DFT calculations, we clarify why water enhances hole trapping at the surface of spherical TiO2 nanoparticles, but not of well-faceted ones. In the final part of the thesis, we tackle the study of the interaction of titanium dioxide surface with water and we develop a DFTB-based computational approach by combining the best available SCC-DFTB parameters for the description of TiO2 and water systems. This novel methodology is shown to accurately describe the static and dynamic behavior of the water/water/titania interface with an accuracy comparable with DFT. On this basis, we apply SCC-DFTB, in parallel with hybrid DFT, for the study of the interface between water and a realistic spherical TiO2 nanoparticle from single molecule to monolayer coverage. We focus on the preferential adsorption mode on undercoordinated Ti sites and the distribution of the binding energies on the surface of the nanoparticle, as well as on the effect of the adsorbed water monolayer on the structural and electronic properties. At multilayer water coverage, SCC-DFTB molecular dynamics simulation are performed to analyze the density profile and the structure of the hydration layers.
Nanoparticelle di biossido di titanio (TiO2) al di sotto dei 10 nm sono alla base di applicazioni nel campo del fotovoltaico e della fotocatalisi. Al fine di migliorare le prestazioni, è importante capire come la dimensione, la forma e l’interazione con l’acqua influenzano le proprietà strutturali, electroniche e (foto)chimiche di questo nanomateriale. In questa tesi presentiamo uno studio di modellizzazione a principi primi di nanoparticelle di anatasio con diversa morfologia ed una dimensione realistica. In questo lavoro abbiamo impiegato la teoria del funzionale della densità (density functional theory, DFT) e, per i sistemi più grandi, il metodo DFT approssimato self-consistent charge density functional tight-binding (SCC-DFTB). Nella prima parte della tesi abbiamo evidenziato le analogie e le differenze tra nanoparticelle sferiche e sfaccettate di varia dimensione (da 1.5 a 4.4 nm). I complessi aspetti strutturali delle nanoparticelle sferiche sono modellizzati tramite una ottimizzazione globale con il metodo SCC-DFTB ed una successiva ottimizzazione al livello di teoria DFT ibrido. Dal punto di vista strutturale, l’attenzione è focalizzata sul rapporto superficie/volume, sulla coordinazione dei siti superficiali, sulle distorsioni dovute alla nanoscala e sulle energie di superficie. Per quanto riguarda le proprietà elettroniche, abbiamo investigato i gap fondamentali e di Kohn-Sham, gli orbitali di frontiera, i potenziali di ionizzazione e le affinità elettroniche ed anche la densità degli stati proiettata sui diversi tipi di titanio ed ossigeno. In seguito ci siamo concentrati sull’effetto della dimensione, della forma e dell’acqua sulla dinamica dei portatori di energia (eccitoni) e carica (elettroni e buche) nei modelli di nanoparticelle di anatasio. La formazione, la separazione e l’auto-intrappolamento degli eccitoni o dei portatori di carica viene descritta in termini di deformazioni strutturali, guadagno o costo energetico, localizzazione/delocalizzazione della carica e transizioni ottiche delle cariche intrappolate. I risultati teorici sono stati corroborati da un dettagliato confronto con i dati sperimentali di fotoluminescenza, risonanza paramagnetica elettronica e spettroscopia di assorbimento transiente. Abbiamo analizzato anche l’effetto dell’acqua sulla dinamica dei portatori di carica per nanoparticelle di titania di diversa morfologia tramite uno studio combinato teorico/sperimentale. Confrontando i risultati della spettroscopia IR stazionaria e transiente con i calcoli DFT, abbiamo chiarito il meccanismo tramite il quale l’acqua è in grado di migliorare la capacità di intrappolamento delle buche sulla superficie delle nanoparticelle sferiche, ma non sulle sfaccettate. Nella parte finale della tesi, affrontiamo lo studio dell’interazione tra l’acqua ed la superficie del biossido di titanio. A tal fine, abbiamo sviluppato un nuovo approccio computazionale basato sul metodo SCC-DFTB attraverso la combinazione dei migliori parametri per sistemi acquosi e materiali allo stato solido. Questa nuova metodologia si è mostrata capace di fornire una descrizione statica e dinamica dell’interfaccia tra multistrati di acqua e titania in linea con i risultati DFT. Abbiamo quindi applicato questo metodo, in parallelo con il DFT ibrido, per lo studio dell’assorbimento di molecole d’acqua su ogni sito di legame così come di un intero strato d’acqua su una nanoparticella sferica realistica di TiO2. Abbiamo concentrato l’attenzione sui modi di assorbimento favoriti, sulla distribuzione delle energie di assorbimento e sull’influenza dell’acqua sulle proprietà strutturali ed elettroniche. Per lo studio del comportamento di un multistrato di acqua sulla superficie della nanoparticella abbiamo realizzato una dinamica molecolare basata sul nuovo metodo DFTB che ha permesso di analizzare il profilo di densità dell’acqua e la struttura delle sfere di solvatazione.
(2018). Ab initio modeling of the physical and (photo)chemical properties of realistic TiO2 nanoparticles in vacuum and in aqueous environment. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2018).
Ab initio modeling of the physical and (photo)chemical properties of realistic TiO2 nanoparticles in vacuum and in aqueous environment
FAZIO, GIANLUCA
2018
Abstract
Nanoparticles of very small size (below 10 nm) of TiO2 material are nowadays the functional building blocks for many applications in photocatalysis and photovoltaics. In order to improve the performances of this nanomaterial, it is of great importance to understand how the size, the shape and the interaction with water influence the structural, electronic and (photo)chemical properties of the TiO2 nanoparticles. In this thesis, we present a first-principles investigation of anatase TiO2 nanoparticles with different morphologies and a realistic size in vacuum and in aqueous environment. Throughout this work, we employed density functional theory (DFT) and, for the largest systems, self-consistent charge density functional tight-binding (SCC-DFTB) methodologies. In the first part of the thesis, we compare faceted and spherical stoichiometric TiO2 nanoparticles of various sizes (from 1.5 nm to 4.4 nm in diameter) in order to highlight analogies and differences. In the case of spherical nanoparticles, their complex structural features have been modeled with a two-scale approach, i.e. a global optimization at the SCC-DFTB level and a further relaxation at the hybrid DFT level of theory. From the structural point of view, we focus the attention on the surface-to-bulk ratio, on the surface sites coordination distribution, on the distortions due to the nanosize and on the surface energies. Regarding the electronic properties, we analyze the difference between Kohn-Sham and fundamental gaps of these finite-sized systems, the frontiers orbitals, ionization potentials and electron affinities and, finally, the densities of states projected on the various coordination sites. Subsequently, we investigate the effect of the size, shape and water adsorption on the life path of energy (excitons) and charge (electrons and holes) carriers in the realistic anatase TiO2 nanoparticle models by means of a wide set of hybrid DFT calculations. We describe and discuss the exciton/charge carriers formation, separation, recombination, self-trapping processes, which are analyzed in terms of structural distortions, energy gain or cost, charge localization/delocalization and electronic transitions of the trapped charges. We corroborate the computational results by an extensive comparison with the available experimental data from photoluminescence measurements, electron paramagnetic resonance (EPR) and transient absorption (TA) spectroscopies. We analyze also the effect of additional water on the photoexcited charge carriers dynamics of TiO2 nanoparticles with different morphologies by a combined experimental and theoretical study. Comparing the results from steady-state and transient infrared spectroscopy with DFT calculations, we clarify why water enhances hole trapping at the surface of spherical TiO2 nanoparticles, but not of well-faceted ones. In the final part of the thesis, we tackle the study of the interaction of titanium dioxide surface with water and we develop a DFTB-based computational approach by combining the best available SCC-DFTB parameters for the description of TiO2 and water systems. This novel methodology is shown to accurately describe the static and dynamic behavior of the water/water/titania interface with an accuracy comparable with DFT. On this basis, we apply SCC-DFTB, in parallel with hybrid DFT, for the study of the interface between water and a realistic spherical TiO2 nanoparticle from single molecule to monolayer coverage. We focus on the preferential adsorption mode on undercoordinated Ti sites and the distribution of the binding energies on the surface of the nanoparticle, as well as on the effect of the adsorbed water monolayer on the structural and electronic properties. At multilayer water coverage, SCC-DFTB molecular dynamics simulation are performed to analyze the density profile and the structure of the hydration layers.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_726017.pdf
Accesso Aperto
Descrizione: tesi di dottorato
Tipologia di allegato:
Doctoral thesis
Dimensione
16.1 MB
Formato
Adobe PDF
|
16.1 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.