The main research theme of my PhD has been the spectroscopic investigation of colloidal semiconductor nanocrystals (NCs), with a focus on the correlation between their surfaces and their photophysics, and was conducted by means of spectroelectrochemistry (SEC) and optical spectroscopy under controlled atmosphere. Specifically, I aimed to understand and model the NCs behavior in a changing oxidative/reducting environment, with the ultimate goal to implement their use as active material in optical oxygen pressure sensors. The high surface-to-volume ratio typical of NCs causes their photoluminescence (PL) efficiency to be strongly affected by a broad distribution of surface defect states. If captured by a surface trap, a photogenerated electron (or hole) becomes unavailable for the radiative recombination, thus lowering the overall PL efficiency of the NCs. By means of SEC, an electrochemical (EC) potential can be applied to a thin film of NCs deposited onto a transparent and conductive substrate, whose PL is excited and collected via dedicated instruments for either continuous or time-resolved measurements. The application of a negative EC potential corresponds to raising the Fermi level of the NCs, thus gradually filling the surface defects and activating their hole-trapping capability. The PL intensity is thus determined by the competition between the quenching effect of hole withdrawal and the brightening effect of suppressed electron trapping. For each material system I performed side-by-side SEC measurements and spectroscopic experiments under controlled atmosphere, and eventually demonstrated different types of optical oxygen pressure sensors, also called pressure-sensitive paints (PSPs), i.e, all-optical probes for monitoring oxygen flows in the vicinity of complex or miniaturized surfaces. They typically consist in a porous binder embedding an oxygen sensitive chromophore, whose PL intensity changes accordingly to the oxygen partial pressure. By employing cesium lead bromide (CsPbBr3) perovskite NCs, I realized an all-inorganic alternative to traditional organic PSPs, based on the increase of their PL intensity under reduced oxygen pressure. This approach relies on the disappearance of the signal in presence of oxygen, which means it may not represent the best approach when high oxygen concentrations (for instance, at atmospheric pressure) need to be detected. In this thesis, I demonstrated how to overcome this issue by realizing a novel-concept, inorganic ‘reverse’ PSP, with cadmium selenide (CdSe) nanoplatelets (NPLs) as active material, since their PL intensity increases with the oxygen concentration. Although the SEC and optical measurements under controlled atmosphere allowed me to understand and model the unusual benefit of an oxidative environment on CdSe NPLs, the PSPs based on them share with the perovskite-based sensors the major drawback of providing a radiometric oxygen detection only, that is, the measurement solely relies on a change in the PL intensity of the chromophore. The PL, however, can also change as a result of a temperature variation or UV-induced degradation. In my work, I introduced a significant improvement by employing dual-emitting, core/shell cadmium selenide/cadmium sulfide (CdSe/CdS) NCs that are capable of simultaneously sustaining core and shell excitons, whose radiative recombination leads to two-color (red and green) luminescence under low-intensity power excitation. Importantly, the two emissive channels exhibit opposite responses to the oxygen pressure, which allowed me to realize an intrinsically calibrated ratiometric PSP whose sensitivity is significantly enhanced with respect to traditional reference-sensor pairs, both in ensemble and at the single particle level.
Durante la mia tesi di dottorato mi sono occupata dello studio spettroscopico di nanocristalli colloidali di semiconduttore e in particolare della correlazione tra le loro superfici e la fotofisica, che ho studiato per mezzo di spettroelettrochimica (SEC) e spettroscopia ottica in atmosfera controllata. Più precisamente, ho studiato e modellizzato il comportamento di diversi tipi di nanocristalli sottoponendoli a variazioni controllate delle condizioni ossidanti/riducenti dell’ambiente che li circonda, con l’obiettivo di implementarne l’uso in sensori ottici di ossigeno. L’elevato rapporto superficie-volume tipico dei nanocristalli fa sì che la loro fotoluminescenza sia fortemente influenzata da un’ampia distribuzione di stati introdotti da difetti superficiali. Un portatore catturato da una trappola in superficie, infatti, non è più disponibile per la ricombinazione radiativa, e abbassa la resa quantica del nanocristallo. Tramite SEC, si può applicare una differenza di potenziale elettrochimico (EC) a un sottile film di nanocristalli depositati su un substrato trasparente e conduttivo. La fotolumiscenza del campione viene eccitata e raccolta sia in continua sia temporalmente risolta tramite appositi rivelatori. L’applicazione di una differenza di potenziale EC negativo corrisponde ad aumentare il livello di Fermi del nanocristallo, riempiendone gradualmente i difetti superficiali e attivando l’intrappolamento di lacune. La fotoluminescenza che ne risulta dipende dall’effetto dominante tra lo spegnimento della stessa dovuto all’intrappolamento di lacune e l’aumento derivante dalla soppressione dell’intrappolamento di elettroni. Per ciascun materiale ho effettuato misure di SEC ed esperimenti in atmosfera controllata, per arrivare alla realizzazione di diversi tipi di sensori ottici di ossigeno (Pressure Sensitive Paints, PSPs), usati per monitorare il flusso di ossigeno nei pressi di superfici complesse o miniaturizzate. Tipicamente consistono in un mezzo poroso in cui è disperso un cromoforo organico, la cui emissione cambia in modo inversamente proporzionale alla pressione di ossigeno. Ho utilizzato nanocristalli di perovskite (cesio-piombo-bromo, CsPbBr3) per realizzare un’alternativa completamente inorganica alle PSP tradizionali, basate su un aumento di segnale sotto pressione ridotta. Questo approccio però non è ottimale in applicazioni in cui è necessario rilevare grandi quantità di ossigeno (a pressione ambientale, per esempio). Un avanzamento in questo senso è fornito dalla PSP ‘inversa’ che ho realizzato tramite nanoplatelet di seleniuro di cadmio (CdSe), che diversamente dai materiali tradizionali per PSP sono in grado di illuminarsi maggiormente, invece che di spegnersi, in presenza di ossigeno. Nonostante il vantaggio offerto dal materiale a comportamento inverso, sia le PSP inverse sia quelle tradizionali si basano su una misura radiometrica di intensità luminosa, la quale però può cambiare anche in seguito a variazioni di temperatura, o degradazione indotta da UV, il che comporta la necessità di complesse procedure di calibrazione. Un miglioramento importante che ho introdotto nel corso del mio dottorato è rappresentato dall’impiego di nanocristalli bi-emissivi core/shell di seleniuro di cadmio/solfuro di cadmio (CdSe/CdS), in grado di sostenere contemporaneamente eccitoni di core e di shell, la cui ricombinazione radiativa porta a fotoluminescenza a due colori (rosso e verde) anche con basse potenze di eccitazione. É importante notare che i due canali emissivi presentano una risposta opposta all’ossigeno, il che mi ha permesso di realizzare una PSP raziometrica e intrinsecamente calibrata, con elevata sensibilità sia a livello di ensemble sia di singola particella.
(2018). ROLE OF NONRADIATIVE SURFACE DEFECTS ON EXCITON RECOMBINATION PROCESSES IN SEMICONDUCTOR COLLOIDAL NANOSTRUCTURES. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2018).
ROLE OF NONRADIATIVE SURFACE DEFECTS ON EXCITON RECOMBINATION PROCESSES IN SEMICONDUCTOR COLLOIDAL NANOSTRUCTURES
LORENZON, MONICA
2018
Abstract
The main research theme of my PhD has been the spectroscopic investigation of colloidal semiconductor nanocrystals (NCs), with a focus on the correlation between their surfaces and their photophysics, and was conducted by means of spectroelectrochemistry (SEC) and optical spectroscopy under controlled atmosphere. Specifically, I aimed to understand and model the NCs behavior in a changing oxidative/reducting environment, with the ultimate goal to implement their use as active material in optical oxygen pressure sensors. The high surface-to-volume ratio typical of NCs causes their photoluminescence (PL) efficiency to be strongly affected by a broad distribution of surface defect states. If captured by a surface trap, a photogenerated electron (or hole) becomes unavailable for the radiative recombination, thus lowering the overall PL efficiency of the NCs. By means of SEC, an electrochemical (EC) potential can be applied to a thin film of NCs deposited onto a transparent and conductive substrate, whose PL is excited and collected via dedicated instruments for either continuous or time-resolved measurements. The application of a negative EC potential corresponds to raising the Fermi level of the NCs, thus gradually filling the surface defects and activating their hole-trapping capability. The PL intensity is thus determined by the competition between the quenching effect of hole withdrawal and the brightening effect of suppressed electron trapping. For each material system I performed side-by-side SEC measurements and spectroscopic experiments under controlled atmosphere, and eventually demonstrated different types of optical oxygen pressure sensors, also called pressure-sensitive paints (PSPs), i.e, all-optical probes for monitoring oxygen flows in the vicinity of complex or miniaturized surfaces. They typically consist in a porous binder embedding an oxygen sensitive chromophore, whose PL intensity changes accordingly to the oxygen partial pressure. By employing cesium lead bromide (CsPbBr3) perovskite NCs, I realized an all-inorganic alternative to traditional organic PSPs, based on the increase of their PL intensity under reduced oxygen pressure. This approach relies on the disappearance of the signal in presence of oxygen, which means it may not represent the best approach when high oxygen concentrations (for instance, at atmospheric pressure) need to be detected. In this thesis, I demonstrated how to overcome this issue by realizing a novel-concept, inorganic ‘reverse’ PSP, with cadmium selenide (CdSe) nanoplatelets (NPLs) as active material, since their PL intensity increases with the oxygen concentration. Although the SEC and optical measurements under controlled atmosphere allowed me to understand and model the unusual benefit of an oxidative environment on CdSe NPLs, the PSPs based on them share with the perovskite-based sensors the major drawback of providing a radiometric oxygen detection only, that is, the measurement solely relies on a change in the PL intensity of the chromophore. The PL, however, can also change as a result of a temperature variation or UV-induced degradation. In my work, I introduced a significant improvement by employing dual-emitting, core/shell cadmium selenide/cadmium sulfide (CdSe/CdS) NCs that are capable of simultaneously sustaining core and shell excitons, whose radiative recombination leads to two-color (red and green) luminescence under low-intensity power excitation. Importantly, the two emissive channels exhibit opposite responses to the oxygen pressure, which allowed me to realize an intrinsically calibrated ratiometric PSP whose sensitivity is significantly enhanced with respect to traditional reference-sensor pairs, both in ensemble and at the single particle level.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_718458.pdf
accesso aperto
Descrizione: tesi di dottorato
Tipologia di allegato:
Doctoral thesis
Dimensione
7 MB
Formato
Adobe PDF
|
7 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.