Many investigated and interesting problems in the representation theory of finite groups concern the global and local structure of the groups. Let G be a finite group, p a prime which divides the order of G and (K,O,F) a splitting p-modular system. The local-global study of the representations of G looks for the invariants of G that can be seen in its local subgroups, i.e., the normalizer N of a p-subgroup D of G, and vice versa. A very strong tool in this context is the Green correspondence, which establishes a bijection between the indecomposable OG-lattices with D as a vertex and the indecomposable ON lattices with vertex D. The main scope of this thesis is the study of linear source lattices and their connection with the irreducible representations of G and N both over K and F. The main objects involved for this goal is the Grothendieck ring of linear source OG-lattices L(G) with its subring of trivial source lattices. The first chapter is dedicated to the main results of the representation theory used through all the thesis. Special emphasis is laid on linear source lattices and their detection. In Chapter 2 the canonical sections of the surjective maps given by the tensor product with K for linear source lattices and with F for trivial source lattices are constructed. This result has been obtained following two strategies. The first involves the construction of dual maps defined considering the species of the rings. The strength of this approach is its link to the representation tables defined by Benson; but the maps constructed take values on the complexification of the rings. The canonical induction formulas introduced by R. Boltje turn out to be the solution to bypass this problem. The final result of this part is the proof that these two approaches lead to the same maps. Chapter 3 is divided in two parts. Studying a ring of modules a natural question is if it is possible to define a meaningful bilinear form. In this context the ring of essential linear source lattices arises. In the first part of Chapter 3 it is formally introduced and its species are studied. In the last part the link between trivial source lattices with maximal vertex and irreducible characters is analyzed in two particular cases: groups with normal subgroups of index p and groups with Sylow subgroups of order p. In the last chapter a connection between the Alperin-McKay conjecture and the Grothendieck group Lmx(B) of linear source lattices with maximal vertex in a block B of OG is established. Considering a bilinear form defined in Chapter 3 and a section of the canonical projection of L(B) in Lmx(B), it is possible to state two new conjectures (1 and 2). If both of them are affirmative, then they yield the Alperin-McKay conjecture and one of its refinements due to M. Isaacs and G. Navarro. Moreover, Conjecture 1 and Alperin-McKay conjecture imply its refinement stated by the previously mentioned mathematicians. The main result of this chapter is the proof of Conjecture 1 in some non trivial cases. E.g., for a block splendid equivalent to its Brauer correspondent (for some defect group) Conjecture 1 is positively verified. By a result of R. Rouquier this applies to the case of blocks with cyclic defect groups. This result establishes a new connection between the refinement due to Isaacs and Navarro and the "splendid form" of Broué conjecture.
Molti dei problemi ancora aperti nella teoria delle rappresentazioni dei gruppi finiti riguardano la struttura locale-globale dei gruppi. Sia G un gruppo finito, p un primo che ne divide l'ordine e (K,O,F) un sistema p-modulare di spezzamento. Lo studio locale-globale delle rappresentazioni di G cerca gli invarianti di G che possono essere individuati nei suoi sottogruppi locali, i.e, nel normalizzatore N di un p-sottogruppo D di G, e viceversa. Uno strumento chiave in questo contesto è la corrispondenza di Green, che stabilisce una biezione tra gli OG-reticoli indecomponibili che hanno D (o un suo coniugato in G) come vertice e gli ON-reticoli indecomponibili con vertice D. Lo scopo principale della tesi è lo studio dei reticoli con sorgente lineare e il loro rapporto con le rappresentazioni irriducibili di G e N su K e su F. Gli oggetti principali utilizzati per questo fine sono l'anello di Grothendieck L(G) degli OG-reticoli con sorgente lineare e il suo sottoanello dei reticoli con sorgente banale. Il primo capitolo raccoglie le definizioni e i risultati principali della teoria delle rappresentazioni utilizzati nella tesi. Una particolare attenzione è data alle proprietà dei reticoli con sorgente lineare e alla loro individuazione. Nel Capitolo 2 sono costruite le sezioni canoniche del prodotto tensore con K (risp. con F) definito dall'anello degli OG-reticoli con sorgente lineare (risp. con sorgente banale) all'anello delle KG-rappresentazioni (risp. FG-rappresentazioni). Questo risultato è stato ottenuto seguendo due strategie. La prima prevede la costruzione di mappe duali considerando le "species" degli anelli coinvolti. Il punto di forza di questo approccio è il legame con le tavole delle rappresentazioni definite da Benson, d'altra parte però le mappe considerate prendono valori sulla complessificazione degli anelli. La seconda strategia, che risolve questo problema, consiste nell'utilizzare le formule canoniche di induzione introdotte da Boltje. Infine viene dimostrato che queste due strategie portano allo stesso risultato. Il terzo capitolo è diviso in due parti. Nella prima viene formalmente introdotto l'anello dei reticoli essenziali con sorgente lineare, come conseguenza della definizione di opportune forme bilineari. Nella seconda parte viene analizzato il rapporto tra i reticoli con sorgente banale e vertice massimo e le KG-rappresentazioni irriducibili in due casi particolari: gruppi con sottogruppi normali di indice p e gruppi con sottogruppi di Sylow di ordine p. Nell’ultimo capitolo viene indagato il legame tra la congettura di Alperin-McKay e il gruppo di Grothendieck Lmx(B) dei reticoli con sorgente lineare e vertice massimo in un blocco B di OG. Considerando una delle forme bilineari definite nel capitolo 3 e una opportuna sezione della proiezione canonica di L(B) in Lmx(B), è possibile formulare due nuove congetture (1 e 2), che implicano la congettura di Alperin-McKay e una sua riformulazione di Isaacs e Navarro. Inoltre la congettura 1 e la congettura di Alperin-McKay implicano la riformulazione proposta dai matematici sopracitati. Il risultato principale di questo capitolo è la verifica della congettura 1 in alcuni casi non banali. Per esempio per blocchi "slendid equivant" al loro corrispondente di Brauer. Per un un risultato di R.Rouquier questo vale per tutti i blocchi con gruppo di difetto ciclico. In particolare, questo mostra un inedito legame tra la “splendid form” della congettura di Broué e la riformulazione di Isaacs e Navarro della congettura di Alperin-McKay.
(2018). Linear source lattices and their relevance in the representation theory of finite groups. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2018).
Linear source lattices and their relevance in the representation theory of finite groups
LANCELLOTTI, BENEDETTA
2018
Abstract
Many investigated and interesting problems in the representation theory of finite groups concern the global and local structure of the groups. Let G be a finite group, p a prime which divides the order of G and (K,O,F) a splitting p-modular system. The local-global study of the representations of G looks for the invariants of G that can be seen in its local subgroups, i.e., the normalizer N of a p-subgroup D of G, and vice versa. A very strong tool in this context is the Green correspondence, which establishes a bijection between the indecomposable OG-lattices with D as a vertex and the indecomposable ON lattices with vertex D. The main scope of this thesis is the study of linear source lattices and their connection with the irreducible representations of G and N both over K and F. The main objects involved for this goal is the Grothendieck ring of linear source OG-lattices L(G) with its subring of trivial source lattices. The first chapter is dedicated to the main results of the representation theory used through all the thesis. Special emphasis is laid on linear source lattices and their detection. In Chapter 2 the canonical sections of the surjective maps given by the tensor product with K for linear source lattices and with F for trivial source lattices are constructed. This result has been obtained following two strategies. The first involves the construction of dual maps defined considering the species of the rings. The strength of this approach is its link to the representation tables defined by Benson; but the maps constructed take values on the complexification of the rings. The canonical induction formulas introduced by R. Boltje turn out to be the solution to bypass this problem. The final result of this part is the proof that these two approaches lead to the same maps. Chapter 3 is divided in two parts. Studying a ring of modules a natural question is if it is possible to define a meaningful bilinear form. In this context the ring of essential linear source lattices arises. In the first part of Chapter 3 it is formally introduced and its species are studied. In the last part the link between trivial source lattices with maximal vertex and irreducible characters is analyzed in two particular cases: groups with normal subgroups of index p and groups with Sylow subgroups of order p. In the last chapter a connection between the Alperin-McKay conjecture and the Grothendieck group Lmx(B) of linear source lattices with maximal vertex in a block B of OG is established. Considering a bilinear form defined in Chapter 3 and a section of the canonical projection of L(B) in Lmx(B), it is possible to state two new conjectures (1 and 2). If both of them are affirmative, then they yield the Alperin-McKay conjecture and one of its refinements due to M. Isaacs and G. Navarro. Moreover, Conjecture 1 and Alperin-McKay conjecture imply its refinement stated by the previously mentioned mathematicians. The main result of this chapter is the proof of Conjecture 1 in some non trivial cases. E.g., for a block splendid equivalent to its Brauer correspondent (for some defect group) Conjecture 1 is positively verified. By a result of R. Rouquier this applies to the case of blocks with cyclic defect groups. This result establishes a new connection between the refinement due to Isaacs and Navarro and the "splendid form" of Broué conjecture.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_726997.pdf
accesso aperto
Descrizione: tesi di dottorato
Tipologia di allegato:
Doctoral thesis
Dimensione
844.84 kB
Formato
Adobe PDF
|
844.84 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.