This PhD thesis concerns the development of GEM (Gas Electron Multiplier) based detectors for fast and thermal neutrons. The first detector developed during my PhD, is a tripleGEM equipped with a three-dimensional cathode (3D-C) coated with 10B4C, designed to detect thermal neutrons with a good efficiency, good spatial resolution and able to sustain the high rate foreseen in the new neutron spallation sources actually under construction, such as the European Spallation Source (ESS). The developed detector is called BANDGEM (Boron Array Neutron Detector) and exploits the 10B(n,α)7Li nuclear reaction to convert the thermal neutrons into secondary charged particles. During my PhD, a series of BANDGEM prototypes were developed based on a series of numerical simulations whose goal was the optimization of the 3D-C geometry. The prototypes were tested under neutron irradiation at the EMMA beam line at ISIS (UK), at the ORPHEE reactor in Saclay (France), and finally at the TREFF beam line at the FRMII reactor (Munich). The last BAND-GEM prototype has an efficiency of about 45% at 4 Å, a spatial resolution of about 6 mm and is able to sustain rate in excess of 1 MHz/cm2. These features make it an attractive candidate for installation - after further optimization - on LoKI, a Small Angle Neutron Scattering (SANS) instrument actually under construction at ESS. In this thesis I present the design for the realization of a full-scale detector for LoKI. The second detector developed during my PhD is a tripleGEM equipped with a plastic converter cathode (nGEM) that will be able to provide the neutron intensity map of the neutron emitted from the beam dump surface of the two NBI (Neutral Beam Injector) prototypes for ITER under development in Padova (Italy) at Consorzio RFX, in the framework of the PRIMA project. The ITER neutral beam test facility (PRIMA) will host two experimental devices: SPIDER, a 100 keV negative hydrogen/deuterium beam, and MITICA, a full scale, 1 MeV deuterium beam. The diagnostic system developed in this thesis is called CNESM (acronym for Close-contact Neutron Emission Surface Mapping) and it is a neutron diagnostic installed in the SPIDER beam dump. The SPIDER beam dump is two rectangular panels (made of CuCrZr-alloy, with an elemental composition of about 99% Cu) water-cooled with the hypervapotrons technique, that are used to stop the incoming beam. During deuterium operation, a significant amount of fast neutrons (En≈2.45MeV) will be produced due to the fusion reactions between the incoming deuterons of the beam and the deuterons previously implanted on the beam dump surface. The detector used by the CNESM diagnostic system is called nGEM and its heart is constituted by a tripleGEM equipped with a cathode composed of a polypropylene layer (2mm thick) that serves as neutron-proton converter followed by an aluminium layer (50 µm thick) that is used to stop all protons emitted from the polypropylene at an angle higher than 40° relative to the normal to the cathode surface. The nGEM is installed on the back of the beam dump and its cathode is positioned at about 30 mm from the beam dump front surface. The small distance of the detector from the neutron source (the beam dump surface), together with the presence of the Al foil, improves the spatial resolution of the detector, that will be able to provide the neutron intensity map with a spatial resolution approaching the size of the single SPIDER beamlet (40x22 mm2). This thesis describes the nGEM detector development and tests. The directional response of the detector to neutrons was verified at FNG (Frascati Neutron Generator). The uniformity, stability and the gamma background rejection capabilities of the detector were tested at the ROTAX beam line at ISIS (UK). Also the engineering design for the integration of the CNESM diagnostic system inside the SPIDER vacuum vessel is presented in the thesis.

Questa tesi di dottorato riguarda lo sviluppo di rivelatori GEM per neutroni veloci e termici. Il primo rivelatore sviluppato durante l’attivià di dottorato è stato un rivelatore a tripla GEM accoppiato ad un catodo convertitore tridimensionale ricoperto di 10B4C sviluppato per la rilevazione di neutroni termici con un alta efficienza, una buona risoluzione spaziale a capace di operare ad alti ratei di conteggio. Tale rivelatore viene chiamato BANDGEM ed utilizza la reazione nucleare 10B(n,α)7Li per converire i neutroni termici in particelle cariche. Durante il mio PhD sono stati sviluppati 3 prototipi di BANDGEM detector, con il fine di ottimizzare la geometria del catodo convertitore. I vari prototpipi sono stati testati utilizzando fasci di neutroni presso la beam line EMMA ad ISIS (UK), presso il reattore ORPHEE a Saclay (Francia) e presso la beam line TREFF al reattore FRMII (Monaco). L’ultimo prototipo sviluppato ha presentato un’efficienza pari al 45% per neutroni da 4 Å, una risoluzione spaziale (FWHM) di circa 6 mm ed è in grado di sostenere reatei superiori a 1 MHz/cm2. Tali caratteristiche rendono il BANDGEM un possibile candidato per costituire il sistema di rivelatori di LoKI, uno strumento di tipo SANS in fase di costruzione presso la Europeean Spallation Source (ESS). Il secondo detector sviluppato è una triplaGEM accoppiata an un convertitore plastico. Tale rivelatore dovrà fornire la mappa di intensità dei neutroni emessi dalla superficie del “beam dump” dei prototipi di NBI per ITER in fase di costruzione a Padova presso il Consorzio RFX. Tali prototipi sono SPIDER, un iniettore in scala ridotta in cui un fascio di deuteroni verrà accelerato fino a 100 keV, e MITICA, un iniettore in scala 1:1 per ITER in cui un fascio di deuterio verrà accelerato fino a 1MeV. Il sistema diagnostico descritto nella tesi è chiamato CNESM (Close Contact Neutron Emission Surface Mapping) e verrà installato sul beam dump di SPIDER. Il beam dump di SPIDER è composto da due pannelli raffreddati attivamente (il materiale utilizzato per la realizzazione dei pannelli è una lega di CuCrZr), i quali hanno il compito di bloccare il fascio di ioni. Durante le operazioni in deuterio, un elevato numero di neutroni veloci (En=2.45 MeV) verranno prodotti sulla superficie del beam dump a causa delle reazioni di fusione nucleare tra il deuterio energetico del beam e il deuterio precedentemente depositato sul beam dump. Il detector utilizzato del sistema diagnostico CNESM è chiamato nGEM, ed è costituito da un rivelatore tripla GEM accoppiato ad un convertitore di polipropilene spesso 2 mm che converte i neutroni incidenti in protoni. Lo strato di polipropilene è seguito da un sottile strato di alluminio (50 µm) utilizzato per fermare tutti i protoni emessi ad un angolo superiore a 40° rispetto alla direzione definita dalla normale alla superficie del catodo. Il rivelatore nGEM è installato nel retro del beam dump, ad una distanza di 30 mm della superficie di emissione dei neutroni. Nella tesi viene descritto lo sviluppo del design del rivelatore nGEM ed i test effettuati. La risposta direzionale del rivelatore è stata testata al Frascati Neutron Generator (FNG) mentre l’uniformità di risposta e la sensititivà del rivelatore ai raggi gamma sono state testate presso la beam line ROTAX ad ISIS. Infine nella tesi viene presentato il lavoro ingegneristico fatto per l’integrazione del sistema all’interno del vacuum vessel di SPIDER.

(2018). GEM based detectors for fast and thermal neutrons. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2018).

GEM based detectors for fast and thermal neutrons

MURARO, ANDREA
2018

Abstract

This PhD thesis concerns the development of GEM (Gas Electron Multiplier) based detectors for fast and thermal neutrons. The first detector developed during my PhD, is a tripleGEM equipped with a three-dimensional cathode (3D-C) coated with 10B4C, designed to detect thermal neutrons with a good efficiency, good spatial resolution and able to sustain the high rate foreseen in the new neutron spallation sources actually under construction, such as the European Spallation Source (ESS). The developed detector is called BANDGEM (Boron Array Neutron Detector) and exploits the 10B(n,α)7Li nuclear reaction to convert the thermal neutrons into secondary charged particles. During my PhD, a series of BANDGEM prototypes were developed based on a series of numerical simulations whose goal was the optimization of the 3D-C geometry. The prototypes were tested under neutron irradiation at the EMMA beam line at ISIS (UK), at the ORPHEE reactor in Saclay (France), and finally at the TREFF beam line at the FRMII reactor (Munich). The last BAND-GEM prototype has an efficiency of about 45% at 4 Å, a spatial resolution of about 6 mm and is able to sustain rate in excess of 1 MHz/cm2. These features make it an attractive candidate for installation - after further optimization - on LoKI, a Small Angle Neutron Scattering (SANS) instrument actually under construction at ESS. In this thesis I present the design for the realization of a full-scale detector for LoKI. The second detector developed during my PhD is a tripleGEM equipped with a plastic converter cathode (nGEM) that will be able to provide the neutron intensity map of the neutron emitted from the beam dump surface of the two NBI (Neutral Beam Injector) prototypes for ITER under development in Padova (Italy) at Consorzio RFX, in the framework of the PRIMA project. The ITER neutral beam test facility (PRIMA) will host two experimental devices: SPIDER, a 100 keV negative hydrogen/deuterium beam, and MITICA, a full scale, 1 MeV deuterium beam. The diagnostic system developed in this thesis is called CNESM (acronym for Close-contact Neutron Emission Surface Mapping) and it is a neutron diagnostic installed in the SPIDER beam dump. The SPIDER beam dump is two rectangular panels (made of CuCrZr-alloy, with an elemental composition of about 99% Cu) water-cooled with the hypervapotrons technique, that are used to stop the incoming beam. During deuterium operation, a significant amount of fast neutrons (En≈2.45MeV) will be produced due to the fusion reactions between the incoming deuterons of the beam and the deuterons previously implanted on the beam dump surface. The detector used by the CNESM diagnostic system is called nGEM and its heart is constituted by a tripleGEM equipped with a cathode composed of a polypropylene layer (2mm thick) that serves as neutron-proton converter followed by an aluminium layer (50 µm thick) that is used to stop all protons emitted from the polypropylene at an angle higher than 40° relative to the normal to the cathode surface. The nGEM is installed on the back of the beam dump and its cathode is positioned at about 30 mm from the beam dump front surface. The small distance of the detector from the neutron source (the beam dump surface), together with the presence of the Al foil, improves the spatial resolution of the detector, that will be able to provide the neutron intensity map with a spatial resolution approaching the size of the single SPIDER beamlet (40x22 mm2). This thesis describes the nGEM detector development and tests. The directional response of the detector to neutrons was verified at FNG (Frascati Neutron Generator). The uniformity, stability and the gamma background rejection capabilities of the detector were tested at the ROTAX beam line at ISIS (UK). Also the engineering design for the integration of the CNESM diagnostic system inside the SPIDER vacuum vessel is presented in the thesis.
TARDOCCHI, MARCO
GEM; neutrons; spallation; fusion; detector
GEM; neutrons; spallation; fusion; detector
FIS/01 - FISICA SPERIMENTALE
English
27-feb-2018
FISICA E ASTRONOMIA - 86R
30
2016/2017
open
(2018). GEM based detectors for fast and thermal neutrons. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2018).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_798498.pdf

accesso aperto

Descrizione: tesi di dottorato
Tipologia di allegato: Doctoral thesis
Dimensione 18.18 MB
Formato Adobe PDF
18.18 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/198980
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact