Genome instability is an hallmark of cancer cells and can be due to DNA damage or replication stress. DNA double strand breaks (DSBs) are the most dangerous type of damage that cells have to manage. In response to DSBs, cells activate an highly conserved mechanism known as DNA damage checkpoint (DDC), whose primary effect is to halt the cell cycle until the damage is repaired. DDC is activated by the apical kinases Tel1/ATM and Mec1/ATR, which phosphorylate and activate the effector kinases Rad53/CHK2 and Chk1/CHK1. The Homologous Recombination (HR)-mediated repair of a DSB starts with the nucleolytic degradation (resection) of the 5’ ends to create long ssDNA tails. In Saccharomyces cerevisiae, resection starts with an endonucleolytic cleavage catalyzed by the MRX complex together with Sae2. More extensive resection relies on two parallel pathways that involve the nucleases Exo1 and Dna2, together with the helicase Sgs1. Resection must be tightly controlled to avoid excessive ssDNA creation. The Ku complex and the checkpoint protein Rad9 negatively regulate resection. While Ku inhibits Exo1, Rad9 restrains nucleolytic degradation by an unknown mechanism. The absence of Sae2 impairs DSB resection and causes prolonged MRX binding at DSB that leads to persistent Tel1 and Rad53-dependent DNA damage checkpoint. SAE2 deleted strains are sensitive to DSBs inducing agents, like camptothecin (CPT). This sensitivity has been associated to the resection defect of sae2∆ cells, but what causes this resection defect and if the enhanced checkpoint signaling contributes to the DNA damage sensitivity of sae2∆ cells is unknown. For these reasons, we tried to identify other possible mechanisms regulating MRX/Sae2 requirement in DSB resection by searching extragenic mutations that suppressed the sensitivity to DNA damaging agents of sae2Δ cells. We identified three mutant alleles (SGS1-G1298R, rad53-Y88H and tel1-N2021D) that suppress both the DNA damage hypersensitivity and the resection defect of sae2∆ cells. We show that Sgs1-G1298R-mediated suppression depends on Dna2 but not on Exo1. Furthermore, not only Sgs1-G1298R suppresses the resection defect of sae2∆ cells but also increases resection efficiency even in a wild type context by escaping Rad9-mediated inhibition. In fact, Rad9 negatively regulates the binding/persistence of Sgs1 at the DSB ends. When inhibition by Rad9 is abolished by the Sgs1-G1298R mutant variant, the requirement for MRX/Sae2 in DSBs resection is reduced. Rad53-Y88H and Tel1-N2021 are loss of function mutant variants that suppress sae2∆ cells sensitivity in a Sgs1-Dna2 dependent manner. Furthermore, abolishing Rad53 and Tel1 kinase activity results in a similar suppression phenotype which does not involve the escape from the checkpoint mediated cell cycle arrest. Rather, defective Rad53 or Tel1 signaling bypasses Sae2 function in DSBs resection by decreasing the amount of Rad9 bound at DSBs. This increases the Sgs1-Dna2 activity that, in turn, can compensate for the lack of Sae2. We propose that persistent Tel1 and Rad53 checkpoint signaling in sae2∆ cells causes DNA damage hypersensitivity and defective DSB resection by increasing the amount of Rad9 that, in turn, inhibits Sgs1-Dna2. Replication stress can induce fork stalling and controlled resection can be a relevant mechanism to allow repair/restart of stalled replication forks. We show that loss of the inhibition that Rad9 exerts on resection exacerbates the sensitivity to replication stress of Mec1 defective yeast cells by exposing stalled replication forks to Dna2-dependent degradation. This Rad9 protective function is independent of checkpoint activation and relies mainly on Rad9-Dpb11 interaction. We propose that Rad9 not only regulates the action of Sgs1-Dna2 at DSBs but also at stalled replication forks, supporting cell viability when the S-phase checkpoint is not fully functional.

L’instabilità genomica è una delle principali caratteristiche delle cellule tumorali e può essere generata da danni al DNA o da stress replicativi. Le rotture della doppia elica di DNA, Double Strand Breaks-DSBs, sono tra i danni più pericolosi che le cellule devono affrontare. In risposta ai DSBs, le cellule attivano un meccanismo molto conservato noto come checkpoint da danno al DNA, il cui effetto primario è quello di bloccare il ciclo cellulare fino a quando la rottura non è stata riparata. L’attivazione del checkpoint è dovuta alle chinasi apicali Tel1 e Mec1 che fosforilano e attivano le chinasi effettrici Rad53 e Chk1. I DSBs possono essere riparati mediante la ricombinazione omologa che inizia con la degradazione nucleolitica-resection- dell’estremità della rottura catalizzata dal complesso MRX e da Sae2. In seguito, le nucleasi Exo1 e Dna2, insieme all’elicasi Sgs1, catalizzano la formazione di lunghi tratti di DNA a singolo filamento. La resection è controllata negativamente dal complesso Ku, che inibisce Exo1, e dalla proteina di checkpoint Rad9, il cui meccanismo di regolazione non è noto. In lievito, l’assenza di Sae2 genera un difetto di resection che è responsabile dell’attivazione persistente del checkpoint dipendente da Tel1 e da Rad53. Per via di questo difetto, mutanti sae2 sono sensibili ad agenti genotossici che inducono DSBs. Tuttavia, la causa del difetto di resection e come l’attivazione incontrollata del checkpoint contribuiscano al fenotipo di sensibilità non è ancora noto. Per questo abbiamo cercato altri meccanismi che regolano l’inizio della resection, identificando mutazioni extrageniche in grado di sopprimere le sensibilità di cellule sae2. Abbiamo quindi isolato tre alleli SGS1-G1298R, rad53-Y88H e tel1-N2021D, in grado di sopprimere non solo le sensibilità ma anche il difetto di resection di mutanti sae2. La soppressione mediata da Sgs1-G1298R dipende da Dna2 e non da Exo1. Inoltre, l’azione di Sgs1-G1298R non solo sopprime il difetto di resection di cellule sae2 ma aumenta anche l’efficienza del processo rispetto ad un ceppo selvatico, a causa della resistenza all’inibizione mediata da Rad9. Infatti, Rad9 regola negativamente il reclutamento di Sgs1 alle estremità della lesione. Quando l’azione inibitoria di Rad9 viene meno, la richiesta del complesso MRX e di Sae2 nell’inizio della resection è ridotta. Rad53-Y88H e Tel1-N2021 sono varianti con perdita di funzione in grado di sopprimere le sensibilità di cellule sae2, in maniera dipendente da Sgs1-Dna2. Inoltre, anche l’assenza dell’attività chinasica di Rad53 e Tel1 permette di ottenere lo stesso fenotipo di soppressione che, tuttavia, non è dovuto al ruolo delle stesse nel blocco del ciclo cellulare. Infatti, queste mutazioni diminuiscono la quantità di Rad9 legato al DSB. Ciò facilita l’azione dell’elicasi Sgs1 e della nucleasi Dna2, sopprimendo così il difetto di resection di cellule sae2. Tali dati portano ad ipotizzare che l’attivazione persistente del checkpoint Tel1 e Rad53 dipendente causi un aumento del reclutamento dell’inibitore Rad9 nell’intorno della lesione che, a sua volta, è responsabile del difetto di resection e delle sensibilità di cellule sae2. Gli stress replicativi inducono il blocco della forca di replicazione e il processo di resection può essere un valido meccanismo per risolverlo. A questo proposito, abbiamo dimostrato che l’assenza dell’inibizione mediata da Rad9 compromette la risposta agli stress replicativi di cellule difettive nell’attività chinasica di Mec1, attraverso la degradazione delle forche bloccate in maniera dipendente da Sgs1 e Dna2. Tale funzione protettiva di Rad9 è indipendente dalla sua funzione nel checkpoint ma dipende principalmente dall’interazione di Rad9 con la proteina Dpb11. Per questo, abbiamo ipotizzato che Rad9 sia in grado di regolare la resection non solo al DSB ma anche alle forche di replicazione bloccate.

(2018). Regulation of DNA-end resection at DNA double strand breaks and stalled replication forks. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2018).

Regulation of DNA-end resection at DNA double strand breaks and stalled replication forks

VILLA, MATTEO
2018

Abstract

Genome instability is an hallmark of cancer cells and can be due to DNA damage or replication stress. DNA double strand breaks (DSBs) are the most dangerous type of damage that cells have to manage. In response to DSBs, cells activate an highly conserved mechanism known as DNA damage checkpoint (DDC), whose primary effect is to halt the cell cycle until the damage is repaired. DDC is activated by the apical kinases Tel1/ATM and Mec1/ATR, which phosphorylate and activate the effector kinases Rad53/CHK2 and Chk1/CHK1. The Homologous Recombination (HR)-mediated repair of a DSB starts with the nucleolytic degradation (resection) of the 5’ ends to create long ssDNA tails. In Saccharomyces cerevisiae, resection starts with an endonucleolytic cleavage catalyzed by the MRX complex together with Sae2. More extensive resection relies on two parallel pathways that involve the nucleases Exo1 and Dna2, together with the helicase Sgs1. Resection must be tightly controlled to avoid excessive ssDNA creation. The Ku complex and the checkpoint protein Rad9 negatively regulate resection. While Ku inhibits Exo1, Rad9 restrains nucleolytic degradation by an unknown mechanism. The absence of Sae2 impairs DSB resection and causes prolonged MRX binding at DSB that leads to persistent Tel1 and Rad53-dependent DNA damage checkpoint. SAE2 deleted strains are sensitive to DSBs inducing agents, like camptothecin (CPT). This sensitivity has been associated to the resection defect of sae2∆ cells, but what causes this resection defect and if the enhanced checkpoint signaling contributes to the DNA damage sensitivity of sae2∆ cells is unknown. For these reasons, we tried to identify other possible mechanisms regulating MRX/Sae2 requirement in DSB resection by searching extragenic mutations that suppressed the sensitivity to DNA damaging agents of sae2Δ cells. We identified three mutant alleles (SGS1-G1298R, rad53-Y88H and tel1-N2021D) that suppress both the DNA damage hypersensitivity and the resection defect of sae2∆ cells. We show that Sgs1-G1298R-mediated suppression depends on Dna2 but not on Exo1. Furthermore, not only Sgs1-G1298R suppresses the resection defect of sae2∆ cells but also increases resection efficiency even in a wild type context by escaping Rad9-mediated inhibition. In fact, Rad9 negatively regulates the binding/persistence of Sgs1 at the DSB ends. When inhibition by Rad9 is abolished by the Sgs1-G1298R mutant variant, the requirement for MRX/Sae2 in DSBs resection is reduced. Rad53-Y88H and Tel1-N2021 are loss of function mutant variants that suppress sae2∆ cells sensitivity in a Sgs1-Dna2 dependent manner. Furthermore, abolishing Rad53 and Tel1 kinase activity results in a similar suppression phenotype which does not involve the escape from the checkpoint mediated cell cycle arrest. Rather, defective Rad53 or Tel1 signaling bypasses Sae2 function in DSBs resection by decreasing the amount of Rad9 bound at DSBs. This increases the Sgs1-Dna2 activity that, in turn, can compensate for the lack of Sae2. We propose that persistent Tel1 and Rad53 checkpoint signaling in sae2∆ cells causes DNA damage hypersensitivity and defective DSB resection by increasing the amount of Rad9 that, in turn, inhibits Sgs1-Dna2. Replication stress can induce fork stalling and controlled resection can be a relevant mechanism to allow repair/restart of stalled replication forks. We show that loss of the inhibition that Rad9 exerts on resection exacerbates the sensitivity to replication stress of Mec1 defective yeast cells by exposing stalled replication forks to Dna2-dependent degradation. This Rad9 protective function is independent of checkpoint activation and relies mainly on Rad9-Dpb11 interaction. We propose that Rad9 not only regulates the action of Sgs1-Dna2 at DSBs but also at stalled replication forks, supporting cell viability when the S-phase checkpoint is not fully functional.
LONGHESE, MARIA PIA
DNA; repair,; Resection,; DNA; DSB
DNA; repair,; Resection,; DNA; DSB
BIO/18 - GENETICA
English
2-mar-2018
BIOLOGIA E BIOTECNOLOGIE - 93R
30
2016/2017
open
(2018). Regulation of DNA-end resection at DNA double strand breaks and stalled replication forks. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2018).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_732155.pdf

accesso aperto

Descrizione: tesi di dottorato
Tipologia di allegato: Doctoral thesis
Dimensione 6 MB
Formato Adobe PDF
6 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/198950
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact