During the last decades, we are witnessing the explosion of the nanotechnologies, which have developed with the aim of manipulating matter in the nanoscale dimension. According to The International Standard Organization (ISO) “Nanoparticles indicate nano-objects with the three external dimensions ranging from 1 to 100 nm” (ISO TS27687/2008). The main route of human exposure is represented by inhalation. NPs characterized by their small size (less than 100 nm) are able to reach the alveoli site, the latest part of our air way tract. The capability of NMs to deposit into alveoli, is the reason why considerer human lung toxicological studies mandatory. About the environmental exposure, NPs are considered as a new class of pollutants especially for the aquatic habitats always considered as a sink for wastes. In the light of this, nanotoxicology studies have become fundamental for assessing the adverse effects of NPs on the aquatic organisms. The main physico-chemical properties that characterize NMs are ascribable to their size, shape, surface charge and coating agents. NM size and shape contribute significantly to their interaction with cells, however, functional groups on the NP surface are the primary dictators of many important nanomaterial properties, such as solubility and macromolecule and cell surface interactions. The knowledge of how cells interact with NPs and how their physico-chemical properties are relevant to toxic effects is of great importance in the perspective of proposing and supporting the development a Safe-by-Design (SbD) approach for the production of safer NPs. The use of several models with different level of complexity allows to obtain a more complete and well-described characterization of NP behavior. Different in vitro models with increasing complexity have been proposed in this thesis for a complete assessment: a simple alveolar monoculture, a novel 3D tetraculture alveolar model and a whole developing organism, the Xenopus laevis early embryos. Monoculture systems are the most commonly models used for the first screening of chemical and particle effects. In particular, the A549 Human Alveolar Adenocarcinoma Cell Line is an established model of Type II alveolar epithelium widely used to performe lung toxicity experiments. In the last years, numerous 3D in vitro lung models have been proposed to perform predictive toxicological inhalation studies. These models, more or less complex, mimic the tissue organization trying to modulate the response of the human lung tissue better than a monoculture. Xenopus laevis is a classical model for embryological studies, also suitable for aquatic toxicology assessment in the standardized procedure called Frog Embryo Teratogenenis Assay – FETAX (ASTM 1998). FETAX is conducted on fertilized Xenopus mid-blastula stage over the organogenesis period, representing an excellent development toxicity alert test, alternative to Mammals to predict the teratogenic potential of a compound with an accuracy of about 80%. The thesis starts with a brief introduction regarding the Nanotechnologies, the Nanoparticle physico-chemical properties and the in vitro models used in the different studies. After that, the manuscript proposes four different chapters regarding different cases of study. First, it will address the toxicological effects of three different shaped nZnO on a simple monoculture of A549 cells (Chapter 1 – paper in preparation); then the focus will place on the effects of AuNPs on a complex 3D in vitro alveolar model (Chapter 2 – paper in preparation). The complexity of the models will increase passing on a whole developing organism, Xenopus laevis; on this model the effects on embryos of several nZnOs (Chapter 3 – Bonfanti et al., 2015) and differently coated AgNPs (Chapter 4 – Colombo et al., 2017) will be discuss. Finally, all the results obtain during the three years of PhD will be gather together and discussed.
Negli ultimi decenni abbiamo assistito all’esplosione delle nanotecnologie, sviluppatesi con lo scopo di manipolare la materia a livello nanometrico. Secondo l’International Standard Organization (ISO) per Nanoparticelle si intendono nano-oggetti con dimensioni comprese tra 1 e 100 nm (ISO TS27687/2008). Questi innovative e sconosciuti nanomateriali (NMs) sono stati portati continuamente sul mercato, causando un’esposizione massiva per l’Uomo e l’Ambiente. La principale via di esposizione per l’uomo è l’inalazione. Le NPs, caratterizzate dale loro piccolo dimensioni (meno di 100 nm) sono in grado di raggiungere gli alveoli, ultima parte del nostro tratto respiratorio. La capacità dei NMs di depositarsi a livello alveolare è la ragione per la quale è d’obbligo considerare prioritari gli studi tossicologici a livello polmonare. Per quanto riguarda l’esposizione ambientale, le NPs vengono considerate come una classe di nuovi contaminanti soprattutto per gli habitat acquatici. Alla luce di ciò, studi nanotossicologici diventano fondamentale per comprendere gli effetti avversi delle NPs sugli organismi acquatici. L’utilizzo di vari modelli con diversi livelli di complessità permette di ottenere una caratterizzazione del comportamento delle NPs sempre più complete e dettagliato. Tre diversi moelli in vitro con un crescente livello di complessità sono proposti in questa tesi: da una semplice monocoltura di cellule alveolari, a un innovative modello 3D alveolare di tetracoltura e un organismo completo in via di sviluppo (Xenopus laevis). Le monocolture sono I sistemi più comunemente usati per uno screening ppeliminare degli effetti di composti chimici e particelle. In particolare, la linea cellular A549 (Human Alveolar Adenocarcinoma Cell Line) è un modello largamente utilizzato in esperimenti tossicologici. Negli ultimi anni, numeri modelli 3D in vitro sono stati proposti per studi predittivi di tossicologia. Questi modelli, più o meno complessi, mimano l’organozzazione tissutale cercando in questo modo di modulare la risposta del tessuto polmonare umano in modo più preciso rispetto a una monocoltura. Xenopus laevis è un classic modello di studi di embriologia, valido anche per studi di tossicologia acquatica. Nella procedura standardizzata, chiamata Frog Embryo Teratogenenis Assay – FETAX (ASTM 1998) gli embrioni vengono esposti durante il periodo di organogenesis. La tesi si struttura in una breve introduzione riguardante le nanotecnologia, le proprietà fisico-chimiche delle NPs e I modelli in vitro utilizzati nei diversi studi. Dopodiché, il manoscritto si compone di quatttro diversi capitol riguardanti altrettanti casi di studio. Inizialmente vengono affrontati gli effetti tossici di tre diverse forme di nZnO su una semplice monocoltura di cellule A549 (Capitolo 1); poi verranno proposti gli effetti di AuNPs su un complesso sistema 3D alveolare (Capitolo 2). La complessità dei modelli cresce passsando poi a un intero organism quali sono gli embrioni di Xenopus laevis; su questo modello sono state testate diversi nZnO (Capitolo 3) e due diverse AgNPs (Capitolo 4). Infine tutti i risultati ottenuti durante i tre anni di dottorato saranno ripresi e discussi.
(2018). From cells to embryos: in vitro models for nanotoxicology. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2018).
From cells to embryos: in vitro models for nanotoxicology
SAIBENE, MELISSA
2018
Abstract
During the last decades, we are witnessing the explosion of the nanotechnologies, which have developed with the aim of manipulating matter in the nanoscale dimension. According to The International Standard Organization (ISO) “Nanoparticles indicate nano-objects with the three external dimensions ranging from 1 to 100 nm” (ISO TS27687/2008). The main route of human exposure is represented by inhalation. NPs characterized by their small size (less than 100 nm) are able to reach the alveoli site, the latest part of our air way tract. The capability of NMs to deposit into alveoli, is the reason why considerer human lung toxicological studies mandatory. About the environmental exposure, NPs are considered as a new class of pollutants especially for the aquatic habitats always considered as a sink for wastes. In the light of this, nanotoxicology studies have become fundamental for assessing the adverse effects of NPs on the aquatic organisms. The main physico-chemical properties that characterize NMs are ascribable to their size, shape, surface charge and coating agents. NM size and shape contribute significantly to their interaction with cells, however, functional groups on the NP surface are the primary dictators of many important nanomaterial properties, such as solubility and macromolecule and cell surface interactions. The knowledge of how cells interact with NPs and how their physico-chemical properties are relevant to toxic effects is of great importance in the perspective of proposing and supporting the development a Safe-by-Design (SbD) approach for the production of safer NPs. The use of several models with different level of complexity allows to obtain a more complete and well-described characterization of NP behavior. Different in vitro models with increasing complexity have been proposed in this thesis for a complete assessment: a simple alveolar monoculture, a novel 3D tetraculture alveolar model and a whole developing organism, the Xenopus laevis early embryos. Monoculture systems are the most commonly models used for the first screening of chemical and particle effects. In particular, the A549 Human Alveolar Adenocarcinoma Cell Line is an established model of Type II alveolar epithelium widely used to performe lung toxicity experiments. In the last years, numerous 3D in vitro lung models have been proposed to perform predictive toxicological inhalation studies. These models, more or less complex, mimic the tissue organization trying to modulate the response of the human lung tissue better than a monoculture. Xenopus laevis is a classical model for embryological studies, also suitable for aquatic toxicology assessment in the standardized procedure called Frog Embryo Teratogenenis Assay – FETAX (ASTM 1998). FETAX is conducted on fertilized Xenopus mid-blastula stage over the organogenesis period, representing an excellent development toxicity alert test, alternative to Mammals to predict the teratogenic potential of a compound with an accuracy of about 80%. The thesis starts with a brief introduction regarding the Nanotechnologies, the Nanoparticle physico-chemical properties and the in vitro models used in the different studies. After that, the manuscript proposes four different chapters regarding different cases of study. First, it will address the toxicological effects of three different shaped nZnO on a simple monoculture of A549 cells (Chapter 1 – paper in preparation); then the focus will place on the effects of AuNPs on a complex 3D in vitro alveolar model (Chapter 2 – paper in preparation). The complexity of the models will increase passing on a whole developing organism, Xenopus laevis; on this model the effects on embryos of several nZnOs (Chapter 3 – Bonfanti et al., 2015) and differently coated AgNPs (Chapter 4 – Colombo et al., 2017) will be discuss. Finally, all the results obtain during the three years of PhD will be gather together and discussed.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_798752.pdf
Accesso Aperto
Descrizione: tesi di dottorato
Tipologia di allegato:
Doctoral thesis
Dimensione
14.1 MB
Formato
Adobe PDF
|
14.1 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.