Southern Apennines represent a collisional orogenic belt whose compressional regime is commonly assumed to have ceased during Middle Quaternary. On the other hand, to the south the Calabria Arc is still characterized by subduction and the principal aim of the present research is to shed some light on the space and time transition from the ceased collision to the active subduction. Accordingly, we investigated the offshore sector of the Southern Apennines accretionary wedge, corresponding to the Taranto Gulf. To gain insights into the offshore accretionary wedge, we reconstructed a 3D geological and tectonic model by interpreting a grid of 40 seismic reflection lines (1100 km, 80 intersections), within an area of ca. 104 km2, calibrated with 17 wells. The geometric and chronological constraints allow documenting a systematic Messinian-Quaternary thrust migration from internal towards external sectors of the wedge. The migrating deformational process was essentially associated with a leading-imbricate thrust system with a general NE-younging direction, where we could recognize and distinguish some major advancing phases characterized by alternating fast thrust propagation events and strain accumulation periods within the wedge. This process is well emphasized by the jump of the foredeep and piggy-back basins. The NE-wards wedge migration was also associated with a lithospheric-scale flexural folding that generated a set of normal faults striking parallel to the coeval thrusts, likely reactivating optimally oriented structures inherited from Mesozoic events. Finally, a persisting thrust activity up to the latest Quaternary and possibly up to Present in correspondence of the externalmost sector of the accretionary wedge has been documented and explained in terms of strain partitioning in the frame of a recent oblique convergence. The results of this research have possible implications for the seismic hazard assessment of the broader region which is possibly greater than previously assumed

Teofiloa, G., Antoncecchi, I., Caputo, R. (2018). Neogene-Quaternary evolution of the offshore sector of the Southern Apennines accretionary wedge, Gulf of Taranto, Italy. TECTONOPHYSICS, 738-739, 16-32 [10.1016/j.tecto.2018.05.006].

Neogene-Quaternary evolution of the offshore sector of the Southern Apennines accretionary wedge, Gulf of Taranto, Italy

Antoncecchi, I
Secondo
;
2018

Abstract

Southern Apennines represent a collisional orogenic belt whose compressional regime is commonly assumed to have ceased during Middle Quaternary. On the other hand, to the south the Calabria Arc is still characterized by subduction and the principal aim of the present research is to shed some light on the space and time transition from the ceased collision to the active subduction. Accordingly, we investigated the offshore sector of the Southern Apennines accretionary wedge, corresponding to the Taranto Gulf. To gain insights into the offshore accretionary wedge, we reconstructed a 3D geological and tectonic model by interpreting a grid of 40 seismic reflection lines (1100 km, 80 intersections), within an area of ca. 104 km2, calibrated with 17 wells. The geometric and chronological constraints allow documenting a systematic Messinian-Quaternary thrust migration from internal towards external sectors of the wedge. The migrating deformational process was essentially associated with a leading-imbricate thrust system with a general NE-younging direction, where we could recognize and distinguish some major advancing phases characterized by alternating fast thrust propagation events and strain accumulation periods within the wedge. This process is well emphasized by the jump of the foredeep and piggy-back basins. The NE-wards wedge migration was also associated with a lithospheric-scale flexural folding that generated a set of normal faults striking parallel to the coeval thrusts, likely reactivating optimally oriented structures inherited from Mesozoic events. Finally, a persisting thrust activity up to the latest Quaternary and possibly up to Present in correspondence of the externalmost sector of the accretionary wedge has been documented and explained in terms of strain partitioning in the frame of a recent oblique convergence. The results of this research have possible implications for the seismic hazard assessment of the broader region which is possibly greater than previously assumed
Articolo in rivista - Review Essay
Accretionary wedge; Strain partitioning; Seismic hazard assessment;
English
9-mag-2018
2018
738-739
16
32
none
Teofiloa, G., Antoncecchi, I., Caputo, R. (2018). Neogene-Quaternary evolution of the offshore sector of the Southern Apennines accretionary wedge, Gulf of Taranto, Italy. TECTONOPHYSICS, 738-739, 16-32 [10.1016/j.tecto.2018.05.006].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/197610
Citazioni
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 12
Social impact