We classify all uniserial modules of the solvable Lie algebra g=〈x〉⋉V, where V is an abelian Lie algebra over an algebraically closed field of characteristic 0 and x is an arbitrary automorphism of V.
Casati, P., Previtali, A., Szechtman, F. (2017). Indecomposable modules of a family of solvable Lie algebras. LINEAR ALGEBRA AND ITS APPLICATIONS, 531, 423-446 [10.1016/j.laa.2017.05.048].
Indecomposable modules of a family of solvable Lie algebras
Previtali, A
;
2017
Abstract
We classify all uniserial modules of the solvable Lie algebra g=〈x〉⋉V, where V is an abelian Lie algebra over an algebraically closed field of characteristic 0 and x is an arbitrary automorphism of V.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
CasatiPrevitaliSzechtman-Indecomposable modules of a family of solvable Lie algebras.pdf
Solo gestori archivio
Descrizione: Articolo principale
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Dimensione
423.03 kB
Formato
Adobe PDF
|
423.03 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.