We classify all uniserial modules of the solvable Lie algebra g=〈x〉⋉V, where V is an abelian Lie algebra over an algebraically closed field of characteristic 0 and x is an arbitrary automorphism of V.

Casati, P., Previtali, A., Szechtman, F. (2017). Indecomposable modules of a family of solvable Lie algebras. LINEAR ALGEBRA AND ITS APPLICATIONS, 531, 423-446 [10.1016/j.laa.2017.05.048].

Indecomposable modules of a family of solvable Lie algebras

Previtali, A
;
2017

Abstract

We classify all uniserial modules of the solvable Lie algebra g=〈x〉⋉V, where V is an abelian Lie algebra over an algebraically closed field of characteristic 0 and x is an arbitrary automorphism of V.
Articolo in rivista - Articolo scientifico
Clebsch–Gordan formula; Indecomposable module; Uniserial module;
Clebsch–Gordan formula; Indecomposable module; Uniserial module; Algebra and Number Theory; Numerical Analysis; Geometry and Topology; Discrete Mathematics and Combinatorics
English
2017
531
423
446
reserved
Casati, P., Previtali, A., Szechtman, F. (2017). Indecomposable modules of a family of solvable Lie algebras. LINEAR ALGEBRA AND ITS APPLICATIONS, 531, 423-446 [10.1016/j.laa.2017.05.048].
File in questo prodotto:
File Dimensione Formato  
CasatiPrevitaliSzechtman-Indecomposable modules of a family of solvable Lie algebras.pdf

Solo gestori archivio

Descrizione: Articolo principale
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 423.03 kB
Formato Adobe PDF
423.03 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/189953
Citazioni
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
Social impact