We classify complete permutation monomials of degree qn−1q−1+1 over the finite field with qn elements in odd characteristic, for n+1 a prime and (n+1)4<q. As a corollary, a conjecture by Wu, Li, Helleseth, and Zhang is proven in odd characteristic. When n+1 is a power of the characteristic we provide some new examples. Indecomposable exceptional polynomials of degree 8 and 9 are also classified.

Bartoli, D., Giulietti, M., Quoos, L., Zini, G. (2017). Complete permutation polynomials from exceptional polynomials. JOURNAL OF NUMBER THEORY, 176, 46-66 [10.1016/j.jnt.2016.12.016].

Complete permutation polynomials from exceptional polynomials

Zini, G
2017

Abstract

We classify complete permutation monomials of degree qn−1q−1+1 over the finite field with qn elements in odd characteristic, for n+1 a prime and (n+1)4
Articolo in rivista - Articolo scientifico
Bent–negabent boolean functions; Complete permutation polynomials; Exceptional polynomials; Permutation polynomials; Algebra and Number Theory
English
2017
176
46
66
none
Bartoli, D., Giulietti, M., Quoos, L., Zini, G. (2017). Complete permutation polynomials from exceptional polynomials. JOURNAL OF NUMBER THEORY, 176, 46-66 [10.1016/j.jnt.2016.12.016].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/189904
Citazioni
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 20
Social impact