Let G be a group and let S be an inverse-closed and identity-free generating set of G. The Cayley graph Cay(G,S) has vertex-set G and two vertices u and v are adjacent if and only if uv−1∈S. Let CAYd(n) be the number of isomorphism classes of d-valent Cayley graphs of order at most n. We show that log⁡(CAYd(n))∈Θ(d(log⁡n)2), as n→∞. We also obtain some stronger results in the case d=3.

Potočnik, P., Spiga, P., Verret, G. (2017). Asymptotic enumeration of vertex-transitive graphs of fixed valency. JOURNAL OF COMBINATORIAL THEORY, 122, 221-240 [10.1016/j.jctb.2016.06.002].

Asymptotic enumeration of vertex-transitive graphs of fixed valency

Spiga, P
;
2017

Abstract

Let G be a group and let S be an inverse-closed and identity-free generating set of G. The Cayley graph Cay(G,S) has vertex-set G and two vertices u and v are adjacent if and only if uv−1∈S. Let CAYd(n) be the number of isomorphism classes of d-valent Cayley graphs of order at most n. We show that log⁡(CAYd(n))∈Θ(d(log⁡n)2), as n→∞. We also obtain some stronger results in the case d=3.
Articolo in rivista - Articolo scientifico
3-Valent; Cayley; Cubic; Enumeration; GRR; Vertex-transitive; Theoretical Computer Science; Discrete Mathematics and Combinatorics; Computational Theory and Mathematics
English
2017
122
221
240
reserved
Potočnik, P., Spiga, P., Verret, G. (2017). Asymptotic enumeration of vertex-transitive graphs of fixed valency. JOURNAL OF COMBINATORIAL THEORY, 122, 221-240 [10.1016/j.jctb.2016.06.002].
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0095895616300375-main.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 462.09 kB
Formato Adobe PDF
462.09 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/189767
Citazioni
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
Social impact