Let G be a group and let S be an inverse-closed and identity-free generating set of G. The Cayley graph Cay(G,S) has vertex-set G and two vertices u and v are adjacent if and only if uv−1∈S. Let CAYd(n) be the number of isomorphism classes of d-valent Cayley graphs of order at most n. We show that log(CAYd(n))∈Θ(d(logn)2), as n→∞. We also obtain some stronger results in the case d=3.
Potočnik, P., Spiga, P., Verret, G. (2017). Asymptotic enumeration of vertex-transitive graphs of fixed valency. JOURNAL OF COMBINATORIAL THEORY, 122, 221-240 [10.1016/j.jctb.2016.06.002].
Asymptotic enumeration of vertex-transitive graphs of fixed valency
Spiga, P
;
2017
Abstract
Let G be a group and let S be an inverse-closed and identity-free generating set of G. The Cayley graph Cay(G,S) has vertex-set G and two vertices u and v are adjacent if and only if uv−1∈S. Let CAYd(n) be the number of isomorphism classes of d-valent Cayley graphs of order at most n. We show that log(CAYd(n))∈Θ(d(logn)2), as n→∞. We also obtain some stronger results in the case d=3.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0095895616300375-main.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Dimensione
462.09 kB
Formato
Adobe PDF
|
462.09 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.