In [0,Π] we consider the complete orthogonal system Pn associated to the weight function ψ = r(2r - l)n-1 sin2 Ø(r2 - (2r - l)cos2 Øxs)-1 and we study mean and pointwise convergence of series expansions with respect to the system Pn in Lp([0, 7r], ch/>). This weight function, and the corresponding system Pn arise from the study of Gelfand transforms of radial functions on a finitely generated free group Fr and our results can be interpreted in terms of multipliers theory on Fr

Kuhn, M. (1984). Convergence of Fourier series expansion related to free groups. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 92(1), 31-36 [10.1090/S0002-9939-1984-0749884-9].

Convergence of Fourier series expansion related to free groups

KUHN, MARIA GABRIELLA
1984

Abstract

In [0,Π] we consider the complete orthogonal system Pn associated to the weight function ψ = r(2r - l)n-1 sin2 Ø(r2 - (2r - l)cos2 Øxs)-1 and we study mean and pointwise convergence of series expansions with respect to the system Pn in Lp([0, 7r], ch/>). This weight function, and the corresponding system Pn arise from the study of Gelfand transforms of radial functions on a finitely generated free group Fr and our results can be interpreted in terms of multipliers theory on Fr
Articolo in rivista - Articolo scientifico
Complete orthogonal system; mean and pointwise convergence; series expansions; radial functions
English
1984
92
1
31
36
none
Kuhn, M. (1984). Convergence of Fourier series expansion related to free groups. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 92(1), 31-36 [10.1090/S0002-9939-1984-0749884-9].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/18610
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact