In this paper we prove boundedness results on atomic Hardy type spaces for multipliers of the spherical transform on noncompact symmetric spaces of arbitrary rank. The multipliers we consider satisfy either inhomogeneous or homogeneous Mihlin-Hörmander type conditions. In particular, we are able to treat the case of strongly singular multipliers whose convolution kernels are not integrable at infinity. Thus our results apply also to negative and imaginary powers of the Laplacian.

Mauceri, G., Meda, S., Vallarino, M. (2017). Endpoint results for spherical multipliers on noncompact symmetric spaces. NEW YORK JOURNAL OF MATHEMATICS, 23, 1327-1356.

Endpoint results for spherical multipliers on noncompact symmetric spaces

Meda, S;Vallarino, M
2017

Abstract

In this paper we prove boundedness results on atomic Hardy type spaces for multipliers of the spherical transform on noncompact symmetric spaces of arbitrary rank. The multipliers we consider satisfy either inhomogeneous or homogeneous Mihlin-Hörmander type conditions. In particular, we are able to treat the case of strongly singular multipliers whose convolution kernels are not integrable at infinity. Thus our results apply also to negative and imaginary powers of the Laplacian.
Articolo in rivista - Articolo scientifico
Atoms; Hardy spaces; Noncompact symmetric spaces; Spherical multipliers; Mathematics (all)
English
2017
23
1327
1356
reserved
Mauceri, G., Meda, S., Vallarino, M. (2017). Endpoint results for spherical multipliers on noncompact symmetric spaces. NEW YORK JOURNAL OF MATHEMATICS, 23, 1327-1356.
File in questo prodotto:
File Dimensione Formato  
MMV-NYJM.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 459.57 kB
Formato Adobe PDF
459.57 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/184987
Citazioni
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
Social impact