Suppose given a complex projective manifold M with a fixed Hodge form Omega. The Bohr-Sommerfeld Lagrangian submanifolds of (M,Omega) are the geometric counterpart to semi-classical physical states, and their geometric quantization has been extensively studied. Here we revisit this theory in the equivariant context, in the presence of a compatible (Hamiltonian) action of a connected compact Lie group.

Debernardi, M., Paoletti, R. (2006). Equivariant asymptotics for Bohr-Sommerfeld Lagrangian submanifolds. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 267(1), 227-263 [10.1007/s00220-006-0039-8].

Equivariant asymptotics for Bohr-Sommerfeld Lagrangian submanifolds

PAOLETTI, ROBERTO
2006

Abstract

Suppose given a complex projective manifold M with a fixed Hodge form Omega. The Bohr-Sommerfeld Lagrangian submanifolds of (M,Omega) are the geometric counterpart to semi-classical physical states, and their geometric quantization has been extensively studied. Here we revisit this theory in the equivariant context, in the presence of a compatible (Hamiltonian) action of a connected compact Lie group.
Articolo in rivista - Articolo scientifico
Hamiltonian action, Lagrangian submanifold, geometric quantization
English
ott-2006
267
1
227
263
none
Debernardi, M., Paoletti, R. (2006). Equivariant asymptotics for Bohr-Sommerfeld Lagrangian submanifolds. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 267(1), 227-263 [10.1007/s00220-006-0039-8].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/1837
Citazioni
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
Social impact