We prove that a class of equations containing the classical periodically forced pendulum problem displays the main features of chaotic dynamics for a set of forcing terms open and dense in suitable spaces. The approach is based on global variational methods. (C) 2002 Elsevier Science (USA)

Bosetto, E., Serra, E., Terracini, S. (2002). Generic-type results for chaotic dynamics in equations with periodic forcing terms. JOURNAL OF DIFFERENTIAL EQUATIONS, 180(1), 99-124 [10.1006/jdeq.2001.4053].

Generic-type results for chaotic dynamics in equations with periodic forcing terms

Terracini, S
2002

Abstract

We prove that a class of equations containing the classical periodically forced pendulum problem displays the main features of chaotic dynamics for a set of forcing terms open and dense in suitable spaces. The approach is based on global variational methods. (C) 2002 Elsevier Science (USA)
Articolo in rivista - Articolo scientifico
Chaotic dynamics; conservative systems; Hamiltonian systems; variational methods
English
2002
180
1
99
124
none
Bosetto, E., Serra, E., Terracini, S. (2002). Generic-type results for chaotic dynamics in equations with periodic forcing terms. JOURNAL OF DIFFERENTIAL EQUATIONS, 180(1), 99-124 [10.1006/jdeq.2001.4053].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/18243
Citazioni
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
Social impact