We announce that a class of problems containing the classical periodically forced pendulum equation displays the main features of chaotic dynamics for a dense set of forcing terms in a space of periodic functions with zero mean value. The approach is based on global variational methods.

Bosetto, E., Serra, E., Terracini, S. (2001). Density of chaotic dynamics in periodically forced pendulum-type equations. ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI, 12, 107-113.

Density of chaotic dynamics in periodically forced pendulum-type equations

TERRACINI, SUSANNA
2001

Abstract

We announce that a class of problems containing the classical periodically forced pendulum equation displays the main features of chaotic dynamics for a dense set of forcing terms in a space of periodic functions with zero mean value. The approach is based on global variational methods.
Articolo in rivista - Articolo scientifico
Heteroclinic solutions; variational methods; Implicit Function Theorem
English
2001
12
107
113
none
Bosetto, E., Serra, E., Terracini, S. (2001). Density of chaotic dynamics in periodically forced pendulum-type equations. ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI, 12, 107-113.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/18241
Citazioni
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
Social impact