We prove a double variational characterization of the set of all the periodic solutions of the Kepler problem. We provide a sufficient condition for the existence of a periodic solution with prescribed period or energy for autonomous second-order differential systems with Keplerian-type potentials. The proofs are based on linking arguments. © 1995 by Academic Press, Inc.

Ramos, M., Terracini, S. (1995). Noncollision Periodic Solutions to Some Singular Dynamical Systems with Very Weak Forces. JOURNAL OF DIFFERENTIAL EQUATIONS, 118(1), 121-152 [10.1006/jdeq.1995.1069].

Noncollision Periodic Solutions to Some Singular Dynamical Systems with Very Weak Forces

TERRACINI, SUSANNA
1995

Abstract

We prove a double variational characterization of the set of all the periodic solutions of the Kepler problem. We provide a sufficient condition for the existence of a periodic solution with prescribed period or energy for autonomous second-order differential systems with Keplerian-type potentials. The proofs are based on linking arguments. © 1995 by Academic Press, Inc.
Articolo in rivista - Articolo scientifico
Periodic solutions of dynamical systems
English
1995
118
1
121
152
none
Ramos, M., Terracini, S. (1995). Noncollision Periodic Solutions to Some Singular Dynamical Systems with Very Weak Forces. JOURNAL OF DIFFERENTIAL EQUATIONS, 118(1), 121-152 [10.1006/jdeq.1995.1069].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/18219
Citazioni
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 21
Social impact