We prove the existence of at least one T-periodic solution to a dynamical system of the type {Mathematical expression} (1) where the potentials Vij are T-periodic in t and singular at the origin, ui ε Rki=1, ..., n, and k≧3. We also provide estimates on the H1 norm of this solution. The proofs are based on a variant of the Ljusternik-Schnirelman method. The results here generalize to the n-body problem some results obtained by Bahri & Rabinowitz on the 3-body problem in [6]. © 1993 Springer-Verlag.

Majer, P., Terracini, S. (1993). Periodic solutions to some problems of $n$-body type. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 124(4), 381-404 [10.1007/BF00375608].

Periodic solutions to some problems of $n$-body type

TERRACINI, SUSANNA
1993

Abstract

We prove the existence of at least one T-periodic solution to a dynamical system of the type {Mathematical expression} (1) where the potentials Vij are T-periodic in t and singular at the origin, ui ε Rki=1, ..., n, and k≧3. We also provide estimates on the H1 norm of this solution. The proofs are based on a variant of the Ljusternik-Schnirelman method. The results here generalize to the n-body problem some results obtained by Bahri & Rabinowitz on the 3-body problem in [6]. © 1993 Springer-Verlag.
Articolo in rivista - Articolo scientifico
$n$-body problem
English
1993
124
4
381
404
none
Majer, P., Terracini, S. (1993). Periodic solutions to some problems of $n$-body type. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 124(4), 381-404 [10.1007/BF00375608].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/18215
Citazioni
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 23
Social impact