In this paper the pathwise stabilizability of a linear infinite dimensional stochastic differential equation through anticipative controls is studied under some commutativity assumptions. The generalization of the deterministic Hautus condition is given and it is applied to a concrete parabolic SPDE

Tessitore, G. (1994). Hautus condition for the pathwise stabilizability of an infinite-dimensional stochastic system. STOCHASTIC ANALYSIS AND APPLICATIONS, 12(5), 617-637 [10.1080/07362999408809376].

Hautus condition for the pathwise stabilizability of an infinite-dimensional stochastic system

Tessitore, G.
1994

Abstract

In this paper the pathwise stabilizability of a linear infinite dimensional stochastic differential equation through anticipative controls is studied under some commutativity assumptions. The generalization of the deterministic Hautus condition is given and it is applied to a concrete parabolic SPDE
Articolo in rivista - Articolo scientifico
Stochastic systems
English
1994
12
5
617
637
none
Tessitore, G. (1994). Hautus condition for the pathwise stabilizability of an infinite-dimensional stochastic system. STOCHASTIC ANALYSIS AND APPLICATIONS, 12(5), 617-637 [10.1080/07362999408809376].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/18183
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
Social impact